Cargando…
Tumor cell–organized fibronectin maintenance of a dormant breast cancer population
Tumors can undergo long periods of dormancy, with cancer cells entering a largely quiescent, nonproliferative state before reactivation and outgrowth. To understand the role of the extracellular matrix (ECM) in regulating tumor dormancy, we created an in vitro cell culture system with carefully cont...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7065904/ https://www.ncbi.nlm.nih.gov/pubmed/32195352 http://dx.doi.org/10.1126/sciadv.aaz4157 |
Sumario: | Tumors can undergo long periods of dormancy, with cancer cells entering a largely quiescent, nonproliferative state before reactivation and outgrowth. To understand the role of the extracellular matrix (ECM) in regulating tumor dormancy, we created an in vitro cell culture system with carefully controlled ECM substrates to observe entrance into and exit from dormancy with live imaging. We saw that cell populations capable of surviving entrance into long-term dormancy were heterogeneous, containing quiescent, cell cycle–arrested, and actively proliferating cells. Cell populations capable of entering dormancy formed an organized, fibrillar fibronectin matrix via α(v)β(3) and α(5)β(1) integrin adhesion, ROCK-generated tension, and TGFβ2 stimulation, and cancer cell outgrowth after dormancy required MMP-2–mediated fibronectin degradation. We propose this approach as a useful, in vitro method to study factors important in regulating dormancy, and we used it here to elucidate a role for fibronectin deposition and MMP activation. |
---|