Cargando…

Cell cycle synchronisation using thiazolidinediones affects cellular glucose metabolism and enhances the therapeutic effect of 2-deoxyglucose in colon cancer

The effect of cell cycle synchronisation on glucose metabolism in cancer cells is not known. We assessed how cell cycle synchronisation by thiazolidinediones (TZDs) can affect glucose uptake by cancer cells and investigated the anti-cancer effect of combination therapy with TZDs and 2-deoxy-glucose...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Joon-Kee, Byeon, Hye Eun, Ko, Seung Ah, Park, Bok-Nam, An, Young-Sil, Lee, Ho-Young, Lee, Youn Woo, Lee, Su Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070066/
https://www.ncbi.nlm.nih.gov/pubmed/32170185
http://dx.doi.org/10.1038/s41598-020-61661-4
Descripción
Sumario:The effect of cell cycle synchronisation on glucose metabolism in cancer cells is not known. We assessed how cell cycle synchronisation by thiazolidinediones (TZDs) can affect glucose uptake by cancer cells and investigated the anti-cancer effect of combination therapy with TZDs and 2-deoxy-glucose (2-DG) in colon cancer cells and in mouse xenograft models. Troglitazone (58.1 ± 2.0 vs 48.6 ± 1.3%, p = 0.002) or pioglitazone (82.9 ± 1.9 vs 61.6 ± 3.4%, p < 0.001) induced cell cycle arrest in SW480 cells at G1 phase. Western blot analysis showed the degradation of cyclin D1 and CDK4, and an increase in the expression levels of p21 and p27 after TZDs treatment. Withdrawal of troglitazone treatment induced significant increase in cellular (3)H-DG uptake (141.5% ± 12.9% of controls) and membrane GLUT1 expression levels (146.3% of controls) by 24 h; 1 mM 2-DG treatment alone decreased cell survival by 5.8% as compared with the controls.; however, combination therapy enhanced the anti-tumour effects to 34.6% or 20.3% as compared with control cells. In vivo, each combination treatment group showed significant anti-tumour effects unlike the 2-DG alone group. Cell cycle synchronisation using TZDs induced cellular glucose uptake, which significantly enhanced the therapeutic effect of 2-DG in colon cancer.