Cargando…
Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets
Aroma and taste are the most important attributes of alcoholic beverages. In the study, the self-developed electronic tongue (e-tongue) and electronic nose (e-nose) were used for evaluating the marked ages of rice wines. Six types of feature data sets (e-tongue data set, e-nose data set, direct-fusi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070273/ https://www.ncbi.nlm.nih.gov/pubmed/32075334 http://dx.doi.org/10.3390/s20041065 |
_version_ | 1783505936830169088 |
---|---|
author | Zhang, Huihui Shao, Wenqing Qiu, Shanshan Wang, Jun Wei, Zhenbo |
author_facet | Zhang, Huihui Shao, Wenqing Qiu, Shanshan Wang, Jun Wei, Zhenbo |
author_sort | Zhang, Huihui |
collection | PubMed |
description | Aroma and taste are the most important attributes of alcoholic beverages. In the study, the self-developed electronic tongue (e-tongue) and electronic nose (e-nose) were used for evaluating the marked ages of rice wines. Six types of feature data sets (e-tongue data set, e-nose data set, direct-fusion data set, weighted-fusion data set, optimized direct-fusion data set, and optimized weighted-fusion data set) were used for identifying rice wines with different wine ages. Pearson coefficient analysis and variance inflation factor (VIF) analysis were used to optimize the fusion matrixes by removing the multicollinear information. Two types of discrimination methods (principal component analysis (PCA) and locality preserving projections (LPP)) were used for classifying rice wines, and LPP performed better than PCA in the discrimination work. The best result was obtained by LPP based on the weighted-fusion data set, and all the samples could be classified clearly in the LPP plot. Therefore, the weighted-fusion data were used as independent variables of partial least squares regression, extreme learning machine, and support vector machines (LIBSVM) for evaluating wine ages, respectively. All the methods performed well with good prediction results, and LIBSVM presented the best correlation coefficient (R(2) ≥ 0.9998). |
format | Online Article Text |
id | pubmed-7070273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70702732020-03-19 Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets Zhang, Huihui Shao, Wenqing Qiu, Shanshan Wang, Jun Wei, Zhenbo Sensors (Basel) Article Aroma and taste are the most important attributes of alcoholic beverages. In the study, the self-developed electronic tongue (e-tongue) and electronic nose (e-nose) were used for evaluating the marked ages of rice wines. Six types of feature data sets (e-tongue data set, e-nose data set, direct-fusion data set, weighted-fusion data set, optimized direct-fusion data set, and optimized weighted-fusion data set) were used for identifying rice wines with different wine ages. Pearson coefficient analysis and variance inflation factor (VIF) analysis were used to optimize the fusion matrixes by removing the multicollinear information. Two types of discrimination methods (principal component analysis (PCA) and locality preserving projections (LPP)) were used for classifying rice wines, and LPP performed better than PCA in the discrimination work. The best result was obtained by LPP based on the weighted-fusion data set, and all the samples could be classified clearly in the LPP plot. Therefore, the weighted-fusion data were used as independent variables of partial least squares regression, extreme learning machine, and support vector machines (LIBSVM) for evaluating wine ages, respectively. All the methods performed well with good prediction results, and LIBSVM presented the best correlation coefficient (R(2) ≥ 0.9998). MDPI 2020-02-15 /pmc/articles/PMC7070273/ /pubmed/32075334 http://dx.doi.org/10.3390/s20041065 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Huihui Shao, Wenqing Qiu, Shanshan Wang, Jun Wei, Zhenbo Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets |
title | Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets |
title_full | Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets |
title_fullStr | Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets |
title_full_unstemmed | Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets |
title_short | Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets |
title_sort | collaborative analysis on the marked ages of rice wines by electronic tongue and nose based on different feature data sets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070273/ https://www.ncbi.nlm.nih.gov/pubmed/32075334 http://dx.doi.org/10.3390/s20041065 |
work_keys_str_mv | AT zhanghuihui collaborativeanalysisonthemarkedagesofricewinesbyelectronictongueandnosebasedondifferentfeaturedatasets AT shaowenqing collaborativeanalysisonthemarkedagesofricewinesbyelectronictongueandnosebasedondifferentfeaturedatasets AT qiushanshan collaborativeanalysisonthemarkedagesofricewinesbyelectronictongueandnosebasedondifferentfeaturedatasets AT wangjun collaborativeanalysisonthemarkedagesofricewinesbyelectronictongueandnosebasedondifferentfeaturedatasets AT weizhenbo collaborativeanalysisonthemarkedagesofricewinesbyelectronictongueandnosebasedondifferentfeaturedatasets |