Cargando…
Genomic Analysis of Milk Protein Fractions in Brown Swiss Cattle
SIMPLE SUMMARY: Milk protein fractions are hugely important in the dairy industry because of the key role they play in milk technological properties. The selection of cows for milk protein fractions may, therefore, improve both the nutritional and technological characteristics of milk, and, conseque...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070934/ https://www.ncbi.nlm.nih.gov/pubmed/32093277 http://dx.doi.org/10.3390/ani10020336 |
Sumario: | SIMPLE SUMMARY: Milk protein fractions are hugely important in the dairy industry because of the key role they play in milk technological properties. The selection of cows for milk protein fractions may, therefore, improve both the nutritional and technological characteristics of milk, and, consequently, the processing efficiency and value of the dairy product. This study estimated the genetic parameters of the major milk protein fractions (four caseins, and two whey proteins) determined variously as: (i) milk content (g/100g milk), (ii) percentage of milk nitrogen (%N) and (iii) daily yield (g/d) in Brown Swiss dairy cattle. The results showed that the (co)variances and genetic parameter estimates differed according to how the proteins were measured. These results provide useful information for developing selection strategies in dairy cattle breeding programs aimed at improving both the nutritional and technological properties of milk. ABSTRACT: Depending on whether milk protein fractions are evaluated qualitatively or quantitatively, different genetic outcomes may emerge. In this study, we compared the genetic parameters for the major milk protein fractions—caseins (α(S1)-, α(S2)-, β-, and к-CN), and whey proteins (β-lactoglobulin, β-LG; α-lactalbumin, α-LA)—estimated using the multi-trait genomic best linear unbiased prediction method and expressed variously as milk content (g/100g milk), percentage of milk nitrogen (%N) and daily yield per cow (g/d). The results showed that the genetic parameter estimates varied according to how the milk protein fractions were expressed. Heritability estimates for the caseins and whey protein fractions expressed as daily yields were lower than when they were expressed as proportions and contents, revealing important differences in genetic outcomes. The proportion and the content of β-CN were negatively correlated with the proportions and contents of α(S1)-CN, α(S2)-CN, and к-CN, while the daily yield of β–CN was negatively correlated with the daily yields of α(S1)-CN and α(S2)-CN. The Spearman’s rank correlations and the coincidence rates between the various predicted genomic breeding values (GEBV) for the milk protein fractions expressed in different ways indicated that these differences had a significant effect on the ranking of the animals. The results suggest that the way milk protein fractions are expressed has implications for breeding programs aimed at improving milk nutritional and technological characteristics. |
---|