Cargando…
Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites
BACKGROUND: Developing fruit is considered as an excellent model to study the complex network of metabolites which are altered rapidly during development. RESULTS: Metabolomics revealed that developing psyllium fruit is a rich source of primary metabolites (ω-3 and ω-6 fatty acids and amino-acids),...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071626/ https://www.ncbi.nlm.nih.gov/pubmed/32171251 http://dx.doi.org/10.1186/s12870-020-2318-5 |
_version_ | 1783506244839931904 |
---|---|
author | Patel, Manish Kumar Mishra, Avinash Jaiswar, Santlal Jha, Bhavanath |
author_facet | Patel, Manish Kumar Mishra, Avinash Jaiswar, Santlal Jha, Bhavanath |
author_sort | Patel, Manish Kumar |
collection | PubMed |
description | BACKGROUND: Developing fruit is considered as an excellent model to study the complex network of metabolites which are altered rapidly during development. RESULTS: Metabolomics revealed that developing psyllium fruit is a rich source of primary metabolites (ω-3 and ω-6 fatty acids and amino-acids), secondary metabolites and natural antioxidants. Eidonomy and anatomy confirmed that psyllium fruit followed five stages of development. Total lipids and fatty acids were synthesized differentially; saturated fatty acids (FAs) increased, whereas total polyunsaturated FAs decreased with increasing developmental stage. The unsaturation index and degree of unsaturation showed a catenary curve. Principal component analysis confirmed a significant shift in the FA profile from bud initiation to the maturation stage. Similarly, a similar level of total amino acids was present at different developmental stage following a temporal biosynthesis pathway. Total phenolic and flavonoid contents decreased in tandem with fruit development. Twenty-two different metabolites were identified, and metabolic changes were also observed during fruit development. Six metabolites were detected exclusively in the flowering stage, whereas two were detected in each of early and maturity stages of development. The metabolites apigenin and kaempferol were detected ubiquitously in all developmental stages. Time-dependent metabolomics revealed a shift in metabolite biosynthesis. CONCLUSION: During fruit development, metabolites, FAs, amino acids, total phenolics, total flavonoids, antioxidants and scavenging activities changed progressively and were co-ordinately linked to each other. As a future perspective, further studies will focus on the validation of identified metabolites, which integrated with transcriptomics data and will reveal the metabolic regulatory network of development psyllium fruit. |
format | Online Article Text |
id | pubmed-7071626 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-70716262020-03-18 Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites Patel, Manish Kumar Mishra, Avinash Jaiswar, Santlal Jha, Bhavanath BMC Plant Biol Research Article BACKGROUND: Developing fruit is considered as an excellent model to study the complex network of metabolites which are altered rapidly during development. RESULTS: Metabolomics revealed that developing psyllium fruit is a rich source of primary metabolites (ω-3 and ω-6 fatty acids and amino-acids), secondary metabolites and natural antioxidants. Eidonomy and anatomy confirmed that psyllium fruit followed five stages of development. Total lipids and fatty acids were synthesized differentially; saturated fatty acids (FAs) increased, whereas total polyunsaturated FAs decreased with increasing developmental stage. The unsaturation index and degree of unsaturation showed a catenary curve. Principal component analysis confirmed a significant shift in the FA profile from bud initiation to the maturation stage. Similarly, a similar level of total amino acids was present at different developmental stage following a temporal biosynthesis pathway. Total phenolic and flavonoid contents decreased in tandem with fruit development. Twenty-two different metabolites were identified, and metabolic changes were also observed during fruit development. Six metabolites were detected exclusively in the flowering stage, whereas two were detected in each of early and maturity stages of development. The metabolites apigenin and kaempferol were detected ubiquitously in all developmental stages. Time-dependent metabolomics revealed a shift in metabolite biosynthesis. CONCLUSION: During fruit development, metabolites, FAs, amino acids, total phenolics, total flavonoids, antioxidants and scavenging activities changed progressively and were co-ordinately linked to each other. As a future perspective, further studies will focus on the validation of identified metabolites, which integrated with transcriptomics data and will reveal the metabolic regulatory network of development psyllium fruit. BioMed Central 2020-03-14 /pmc/articles/PMC7071626/ /pubmed/32171251 http://dx.doi.org/10.1186/s12870-020-2318-5 Text en © The Author(s). 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Patel, Manish Kumar Mishra, Avinash Jaiswar, Santlal Jha, Bhavanath Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites |
title | Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites |
title_full | Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites |
title_fullStr | Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites |
title_full_unstemmed | Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites |
title_short | Metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (Plantago ovata Forssk.) reveal variation in primary and secondary metabolites |
title_sort | metabolic profiling and scavenging activities of developing circumscissile fruit of psyllium (plantago ovata forssk.) reveal variation in primary and secondary metabolites |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071626/ https://www.ncbi.nlm.nih.gov/pubmed/32171251 http://dx.doi.org/10.1186/s12870-020-2318-5 |
work_keys_str_mv | AT patelmanishkumar metabolicprofilingandscavengingactivitiesofdevelopingcircumscissilefruitofpsylliumplantagoovataforsskrevealvariationinprimaryandsecondarymetabolites AT mishraavinash metabolicprofilingandscavengingactivitiesofdevelopingcircumscissilefruitofpsylliumplantagoovataforsskrevealvariationinprimaryandsecondarymetabolites AT jaiswarsantlal metabolicprofilingandscavengingactivitiesofdevelopingcircumscissilefruitofpsylliumplantagoovataforsskrevealvariationinprimaryandsecondarymetabolites AT jhabhavanath metabolicprofilingandscavengingactivitiesofdevelopingcircumscissilefruitofpsylliumplantagoovataforsskrevealvariationinprimaryandsecondarymetabolites |