Cargando…
Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge
Enteroviral infections are implicated in islet autoimmunity and type 1 diabetes (T1D) pathogenesis. Significant β-cell stress and damage occur with viral infection, leading to cells that are dysfunctional and vulnerable to destruction. Human stem cell-derived β (SC-β) cells are insulin-producing cel...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074978/ https://www.ncbi.nlm.nih.gov/pubmed/32093375 http://dx.doi.org/10.3390/microorganisms8020295 |
_version_ | 1783506949618270208 |
---|---|
author | Nyalwidhe, Julius O. Jurczyk, Agata Satish, Basanthi Redick, Sambra Qaisar, Natasha Trombly, Melanie I. Vangala, Pranitha Racicot, Riccardo Bortell, Rita Harlan, David M. Greiner, Dale L. Brehm, Michael A. Nadler, Jerry L. Wang, Jennifer P. |
author_facet | Nyalwidhe, Julius O. Jurczyk, Agata Satish, Basanthi Redick, Sambra Qaisar, Natasha Trombly, Melanie I. Vangala, Pranitha Racicot, Riccardo Bortell, Rita Harlan, David M. Greiner, Dale L. Brehm, Michael A. Nadler, Jerry L. Wang, Jennifer P. |
author_sort | Nyalwidhe, Julius O. |
collection | PubMed |
description | Enteroviral infections are implicated in islet autoimmunity and type 1 diabetes (T1D) pathogenesis. Significant β-cell stress and damage occur with viral infection, leading to cells that are dysfunctional and vulnerable to destruction. Human stem cell-derived β (SC-β) cells are insulin-producing cell clusters that closely resemble native β cells. To better understand the events precipitated by enteroviral infection of β cells, we investigated transcriptional and proteomic changes in SC-β cells challenged with coxsackie B virus (CVB). We confirmed infection by demonstrating that viral protein colocalized with insulin-positive SC-β cells by immunostaining. Transcriptome analysis showed a decrease in insulin gene expression following infection, and combined transcriptional and proteomic analysis revealed activation of innate immune pathways, including type I interferon (IFN), IFN-stimulated genes, nuclear factor-kappa B (NF-κB) and downstream inflammatory cytokines, and major histocompatibility complex (MHC) class I. Finally, insulin release by CVB4-infected SC-β cells was impaired. These transcriptional, proteomic, and functional findings are in agreement with responses in primary human islets infected with CVB ex vivo. Human SC-β cells may serve as a surrogate for primary human islets in virus-induced diabetes models. Because human SC-β cells are more genetically tractable and accessible than primary islets, they may provide a preferred platform for investigating T1D pathogenesis and developing new treatments. |
format | Online Article Text |
id | pubmed-7074978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70749782020-03-20 Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge Nyalwidhe, Julius O. Jurczyk, Agata Satish, Basanthi Redick, Sambra Qaisar, Natasha Trombly, Melanie I. Vangala, Pranitha Racicot, Riccardo Bortell, Rita Harlan, David M. Greiner, Dale L. Brehm, Michael A. Nadler, Jerry L. Wang, Jennifer P. Microorganisms Article Enteroviral infections are implicated in islet autoimmunity and type 1 diabetes (T1D) pathogenesis. Significant β-cell stress and damage occur with viral infection, leading to cells that are dysfunctional and vulnerable to destruction. Human stem cell-derived β (SC-β) cells are insulin-producing cell clusters that closely resemble native β cells. To better understand the events precipitated by enteroviral infection of β cells, we investigated transcriptional and proteomic changes in SC-β cells challenged with coxsackie B virus (CVB). We confirmed infection by demonstrating that viral protein colocalized with insulin-positive SC-β cells by immunostaining. Transcriptome analysis showed a decrease in insulin gene expression following infection, and combined transcriptional and proteomic analysis revealed activation of innate immune pathways, including type I interferon (IFN), IFN-stimulated genes, nuclear factor-kappa B (NF-κB) and downstream inflammatory cytokines, and major histocompatibility complex (MHC) class I. Finally, insulin release by CVB4-infected SC-β cells was impaired. These transcriptional, proteomic, and functional findings are in agreement with responses in primary human islets infected with CVB ex vivo. Human SC-β cells may serve as a surrogate for primary human islets in virus-induced diabetes models. Because human SC-β cells are more genetically tractable and accessible than primary islets, they may provide a preferred platform for investigating T1D pathogenesis and developing new treatments. MDPI 2020-02-20 /pmc/articles/PMC7074978/ /pubmed/32093375 http://dx.doi.org/10.3390/microorganisms8020295 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nyalwidhe, Julius O. Jurczyk, Agata Satish, Basanthi Redick, Sambra Qaisar, Natasha Trombly, Melanie I. Vangala, Pranitha Racicot, Riccardo Bortell, Rita Harlan, David M. Greiner, Dale L. Brehm, Michael A. Nadler, Jerry L. Wang, Jennifer P. Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge |
title | Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge |
title_full | Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge |
title_fullStr | Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge |
title_full_unstemmed | Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge |
title_short | Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge |
title_sort | proteomic and transcriptional profiles of human stem cell-derived β cells following enteroviral challenge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074978/ https://www.ncbi.nlm.nih.gov/pubmed/32093375 http://dx.doi.org/10.3390/microorganisms8020295 |
work_keys_str_mv | AT nyalwidhejuliuso proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT jurczykagata proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT satishbasanthi proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT redicksambra proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT qaisarnatasha proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT tromblymelaniei proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT vangalapranitha proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT racicotriccardo proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT bortellrita proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT harlandavidm proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT greinerdalel proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT brehmmichaela proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT nadlerjerryl proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge AT wangjenniferp proteomicandtranscriptionalprofilesofhumanstemcellderivedbcellsfollowingenteroviralchallenge |