Cargando…

Enzymes involved in folate metabolism and its implication for cancer treatment

BACKGROUND/OBJECTIVES: Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, Sung-Eun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Nutrition Society and the Korean Society of Community Nutrition 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075736/
https://www.ncbi.nlm.nih.gov/pubmed/32256983
http://dx.doi.org/10.4162/nrp.2020.14.2.95
_version_ 1783507073332412416
author Kim, Sung-Eun
author_facet Kim, Sung-Eun
author_sort Kim, Sung-Eun
collection PubMed
description BACKGROUND/OBJECTIVES: Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy. METHODS: This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil. RESULTS AND DISCUSSION: Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.
format Online
Article
Text
id pubmed-7075736
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Korean Nutrition Society and the Korean Society of Community Nutrition
record_format MEDLINE/PubMed
spelling pubmed-70757362020-04-01 Enzymes involved in folate metabolism and its implication for cancer treatment Kim, Sung-Eun Nutr Res Pract Review BACKGROUND/OBJECTIVES: Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy. METHODS: This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil. RESULTS AND DISCUSSION: Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices. The Korean Nutrition Society and the Korean Society of Community Nutrition 2020-04 2020-03-06 /pmc/articles/PMC7075736/ /pubmed/32256983 http://dx.doi.org/10.4162/nrp.2020.14.2.95 Text en ©2020 The Korean Nutrition Society and the Korean Society of Community Nutrition http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Kim, Sung-Eun
Enzymes involved in folate metabolism and its implication for cancer treatment
title Enzymes involved in folate metabolism and its implication for cancer treatment
title_full Enzymes involved in folate metabolism and its implication for cancer treatment
title_fullStr Enzymes involved in folate metabolism and its implication for cancer treatment
title_full_unstemmed Enzymes involved in folate metabolism and its implication for cancer treatment
title_short Enzymes involved in folate metabolism and its implication for cancer treatment
title_sort enzymes involved in folate metabolism and its implication for cancer treatment
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075736/
https://www.ncbi.nlm.nih.gov/pubmed/32256983
http://dx.doi.org/10.4162/nrp.2020.14.2.95
work_keys_str_mv AT kimsungeun enzymesinvolvedinfolatemetabolismanditsimplicationforcancertreatment