Cargando…
Semi-Mechanism-Based Pharmacokinetic-Toxicodynamic Model of Oxaliplatin-Induced Acute and Chronic Neuropathy
Oxaliplatin (L-OHP) is widely prescribed for treating gastroenterological cancer. L-OHP-induced peripheral neuropathy is a critical toxic effect that limits the dosage of L-OHP. An ideal chemotherapeutic strategy that does not result in severe peripheral neuropathy but confers high anticancer effica...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076355/ https://www.ncbi.nlm.nih.gov/pubmed/32028733 http://dx.doi.org/10.3390/pharmaceutics12020125 |
Sumario: | Oxaliplatin (L-OHP) is widely prescribed for treating gastroenterological cancer. L-OHP-induced peripheral neuropathy is a critical toxic effect that limits the dosage of L-OHP. An ideal chemotherapeutic strategy that does not result in severe peripheral neuropathy but confers high anticancer efficacy has not been established. To establish an optimal evidence-based dosing regimen, a pharmacokinetic-toxicodynamic (PK-TD) model that can characterize the relationship between drug administration regimen and L-OHP-induced peripheral neuropathy is required. We developed a PK-TD model of L-OHP for peripheral neuropathy using Phoenix(®) NLME™ Version 8.1. Plasma concentration of L-OHP, the number of withdrawal responses in the acetone test, and the threshold value in the von Frey test following 3, 5, or 8 mg/kg L-OHP administration were used. The PK-TD model consisting of an indirect response model and a transit compartment model adequately described and simulated time-course alterations of onset and grade of L-OHP-induced cold and mechanical allodynia. The results of model analysis suggested that individual fluctuation of plasma L-OHP concentration might be a more important factor for individual variability of neuropathy than cell sensitivity to L-OHP. The current PK-TD model might contribute to investigation and establishment of an optimal dosing strategy that can reduce L-OHP-induced neuropathy. |
---|