Cargando…
R409K mutation prevents acid-induced aggregation of human IgG4
Human immunoglobulin G isotype 4 (IgG4) antibodies are suitable for use in either the antagonist or agonist format because their low effector functions prevent target cytotoxicity or unwanted cytokine secretion. However, while manufacturing therapeutic antibodies, they are exposed to low pH during p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077836/ https://www.ncbi.nlm.nih.gov/pubmed/32182240 http://dx.doi.org/10.1371/journal.pone.0229027 |
_version_ | 1783507513852821504 |
---|---|
author | Namisaki, Hiroshi Saito, Seiji Hiraishi, Keiko Haba, Tomoko Tanaka, Yoshitaka Yoshida, Hideaki Iida, Shigeru Takahashi, Nobuaki |
author_facet | Namisaki, Hiroshi Saito, Seiji Hiraishi, Keiko Haba, Tomoko Tanaka, Yoshitaka Yoshida, Hideaki Iida, Shigeru Takahashi, Nobuaki |
author_sort | Namisaki, Hiroshi |
collection | PubMed |
description | Human immunoglobulin G isotype 4 (IgG4) antibodies are suitable for use in either the antagonist or agonist format because their low effector functions prevent target cytotoxicity or unwanted cytokine secretion. However, while manufacturing therapeutic antibodies, they are exposed to low pH during purification, and IgG4 is more susceptible to low-pH-induced aggregation than IgG1. Therefore, we investigated the underlying mechanisms of IgG4 aggregation at low pH and engineered an IgG4 with enhanced stability. By swapping the constant regions of IgG1 and IgG4, we determined that the constant heavy chain (CH3) domain is critical for aggregate formation, but a core-hinge-stabilizing S228P mutation in IgG4 is insufficient for preventing aggregation. To identify the aggregation-prone amino acid, we substituted the CH3 domain of IgG4 with that of IgG1, changing IgG4 Arg409 to a Lys, thereby preventing the aggregation of the IgG4 variant as effectively as in IgG1. A stabilizing effect was also recorded with other variable-region variants. Analysis of thermal stability using differential scanning calorimetry revealed that the R409K substitution increased the Tm value of CH3, suggesting that the R409K mutation contributed to the structural strengthening of the CH3-CH3 interaction. The R409K mutation did not influence the binding to antigens/human Fcγ receptors; whereas, the concurrent S228P and R409K mutations in IgG4 suppressed Fab-arm exchange drastically and as effectively as in IgG1, in both in vitro and in vivo in mice models. Our findings suggest that the IgG4 R409K variant represents a potential therapeutic IgG for use in low-effector-activity format that exhibits increased stability. |
format | Online Article Text |
id | pubmed-7077836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-70778362020-03-23 R409K mutation prevents acid-induced aggregation of human IgG4 Namisaki, Hiroshi Saito, Seiji Hiraishi, Keiko Haba, Tomoko Tanaka, Yoshitaka Yoshida, Hideaki Iida, Shigeru Takahashi, Nobuaki PLoS One Research Article Human immunoglobulin G isotype 4 (IgG4) antibodies are suitable for use in either the antagonist or agonist format because their low effector functions prevent target cytotoxicity or unwanted cytokine secretion. However, while manufacturing therapeutic antibodies, they are exposed to low pH during purification, and IgG4 is more susceptible to low-pH-induced aggregation than IgG1. Therefore, we investigated the underlying mechanisms of IgG4 aggregation at low pH and engineered an IgG4 with enhanced stability. By swapping the constant regions of IgG1 and IgG4, we determined that the constant heavy chain (CH3) domain is critical for aggregate formation, but a core-hinge-stabilizing S228P mutation in IgG4 is insufficient for preventing aggregation. To identify the aggregation-prone amino acid, we substituted the CH3 domain of IgG4 with that of IgG1, changing IgG4 Arg409 to a Lys, thereby preventing the aggregation of the IgG4 variant as effectively as in IgG1. A stabilizing effect was also recorded with other variable-region variants. Analysis of thermal stability using differential scanning calorimetry revealed that the R409K substitution increased the Tm value of CH3, suggesting that the R409K mutation contributed to the structural strengthening of the CH3-CH3 interaction. The R409K mutation did not influence the binding to antigens/human Fcγ receptors; whereas, the concurrent S228P and R409K mutations in IgG4 suppressed Fab-arm exchange drastically and as effectively as in IgG1, in both in vitro and in vivo in mice models. Our findings suggest that the IgG4 R409K variant represents a potential therapeutic IgG for use in low-effector-activity format that exhibits increased stability. Public Library of Science 2020-03-17 /pmc/articles/PMC7077836/ /pubmed/32182240 http://dx.doi.org/10.1371/journal.pone.0229027 Text en © 2020 Namisaki et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Namisaki, Hiroshi Saito, Seiji Hiraishi, Keiko Haba, Tomoko Tanaka, Yoshitaka Yoshida, Hideaki Iida, Shigeru Takahashi, Nobuaki R409K mutation prevents acid-induced aggregation of human IgG4 |
title | R409K mutation prevents acid-induced aggregation of human IgG4 |
title_full | R409K mutation prevents acid-induced aggregation of human IgG4 |
title_fullStr | R409K mutation prevents acid-induced aggregation of human IgG4 |
title_full_unstemmed | R409K mutation prevents acid-induced aggregation of human IgG4 |
title_short | R409K mutation prevents acid-induced aggregation of human IgG4 |
title_sort | r409k mutation prevents acid-induced aggregation of human igg4 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077836/ https://www.ncbi.nlm.nih.gov/pubmed/32182240 http://dx.doi.org/10.1371/journal.pone.0229027 |
work_keys_str_mv | AT namisakihiroshi r409kmutationpreventsacidinducedaggregationofhumanigg4 AT saitoseiji r409kmutationpreventsacidinducedaggregationofhumanigg4 AT hiraishikeiko r409kmutationpreventsacidinducedaggregationofhumanigg4 AT habatomoko r409kmutationpreventsacidinducedaggregationofhumanigg4 AT tanakayoshitaka r409kmutationpreventsacidinducedaggregationofhumanigg4 AT yoshidahideaki r409kmutationpreventsacidinducedaggregationofhumanigg4 AT iidashigeru r409kmutationpreventsacidinducedaggregationofhumanigg4 AT takahashinobuaki r409kmutationpreventsacidinducedaggregationofhumanigg4 |