Cargando…

Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing

Continuous room temperature nanowire lasing from silicon-integrated optoelectronic elements requires careful optimisation of both the lasing cavity Q-factor and population inversion conditions. We apply time-gated optical interferometry to the lasing emission from high-quality GaAsP/GaAs quantum wel...

Descripción completa

Detalles Bibliográficos
Autores principales: Skalsky, Stefan, Zhang, Yunyan, Alanis, Juan Arturo, Fonseka, H. Aruni, Sanchez, Ana M., Liu, Huiyun, Parkinson, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078256/
https://www.ncbi.nlm.nih.gov/pubmed/32194957
http://dx.doi.org/10.1038/s41377-020-0279-y
Descripción
Sumario:Continuous room temperature nanowire lasing from silicon-integrated optoelectronic elements requires careful optimisation of both the lasing cavity Q-factor and population inversion conditions. We apply time-gated optical interferometry to the lasing emission from high-quality GaAsP/GaAs quantum well nanowire laser structures, revealing high Q-factors of 1250 ± 90 corresponding to end-facet reflectivities of R = 0.73 ± 0.02. By using optimised direct–indirect band alignment in the active region, we demonstrate a well-refilling mechanism providing a quasi-four-level system leading to multi-nanosecond lasing and record low room temperature lasing thresholds (~6 μJ cm(−2) pulse(−1)) for III–V nanowire lasers. Our findings demonstrate a highly promising new route towards continuously operating silicon-integrated nanolaser elements.