Cargando…

Discovery of a bacterial peptide as a modulator of GLP-1 and metabolic disease

Early work in rodents highlighted the gut microbiota’s importance in metabolic disease, including Type II Diabetes Mellitus (T2DM) and obesity. Glucagon-like peptide-1 (GLP-1), an incretin secreted by L-cells lining the gastrointestinal epithelium, has important functions: promoting insulin secretio...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomaro-Duchesneau, Catherine, LeValley, Stephanie L., Roeth, Daniel, Sun, Liang, Horrigan, Frank T., Kalkum, Markus, Hyser, Joseph M., Britton, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080827/
https://www.ncbi.nlm.nih.gov/pubmed/32188864
http://dx.doi.org/10.1038/s41598-020-61112-0
Descripción
Sumario:Early work in rodents highlighted the gut microbiota’s importance in metabolic disease, including Type II Diabetes Mellitus (T2DM) and obesity. Glucagon-like peptide-1 (GLP-1), an incretin secreted by L-cells lining the gastrointestinal epithelium, has important functions: promoting insulin secretion, insulin sensitivity, and β-cell mass, while inhibiting gastric emptying and appetite. We set out to identify microbial strains with GLP-1 stimulatory activity as potential metabolic disease therapeutics. Over 1500 human-derived strains were isolated from healthy individuals and screened for GLP-1 modulation by incubating bacterial cell-free supernatants with NCI H716 L-cells. Approximately 45 strains capable of increasing GLP-1 were discovered. All GLP-1 positive strains were identified as Staphylococcus epidermidis by 16S rRNA sequencing. Mass spectrometry analysis identified a 3 kDa peptide, Hld (delta-toxin), present in GLP-1 positive supernatants but absent in GLP-1 neutral supernatants. Studies in NCI-H716 cells and human jejunal enteroids engineered to make more enteroendocrine cells demonstrated that Hld alone is sufficient to enhance GLP-1 secretion. When administered in high-fat-fed mice, Hld-producing S. epidermidis significantly reduced markers associated with obesity and T2DM. Further characterization of Hld suggests GLP-1 stimulatory action of Hld occurs via calcium signaling. The presented results identify a novel host-microbe interaction which may ultimately lead to the development of a microbial peptide-based therapeutic for metabolic disease.