Cargando…

A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer

This paper reports a novel flexible film bulk acoustic resonator (FBAR) based on [Formula: see text]-phase polyvinylidene fluoride (PVDF) piezoelectric polymer. The proposed device was simulated and evaluated; then, a low-temperature photolithography process with a double exposure method was develop...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ting, Jin, Hao, Dong, Shurong, Xuan, Weipeng, Xu, Hongsheng, Lu, Leihe, Fang, Zijing, Huang, Shuyi, Tao, Xiang, Shi, Lin, Liu, Shuting, Luo, Jikui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085767/
https://www.ncbi.nlm.nih.gov/pubmed/32121461
http://dx.doi.org/10.3390/s20051346
_version_ 1783509008384000000
author Wu, Ting
Jin, Hao
Dong, Shurong
Xuan, Weipeng
Xu, Hongsheng
Lu, Leihe
Fang, Zijing
Huang, Shuyi
Tao, Xiang
Shi, Lin
Liu, Shuting
Luo, Jikui
author_facet Wu, Ting
Jin, Hao
Dong, Shurong
Xuan, Weipeng
Xu, Hongsheng
Lu, Leihe
Fang, Zijing
Huang, Shuyi
Tao, Xiang
Shi, Lin
Liu, Shuting
Luo, Jikui
author_sort Wu, Ting
collection PubMed
description This paper reports a novel flexible film bulk acoustic resonator (FBAR) based on [Formula: see text]-phase polyvinylidene fluoride (PVDF) piezoelectric polymer. The proposed device was simulated and evaluated; then, a low-temperature photolithography process with a double exposure method was developed to pattern the electrodes for the device, which enabled the device to retain the piezoelectric properties of the [Formula: see text]-phase PVDF film. Results showed that the β-phase PVDF FBARs had a resonant frequency round 9.212 [Formula: see text] with a high electromechanical coupling coefficient ([Formula: see text]) of 12.76% ± 0.56%. The device performed well over a wide bending-strain range up to 2400 [Formula: see text] owing to its excellent flexibility. It showed good stability as a strain sensor with a sensitivity of 80 [Formula: see text] , and no visible deterioration was observed after cyclic bending tests. The PVDF FBAR also exhibited an exceptionally large temperature coefficient of frequency (TCF) of −4630 [Formula: see text] , two orders of magnitude larger than those of other FBARs based on common inorganic piezoelectric materials, extraordinarily high sensitivity for temperature sensing. All results showed that [Formula: see text]-phase PVDF FBARs have the potential to expand the application scope for future flexible electronics.
format Online
Article
Text
id pubmed-7085767
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70857672020-03-25 A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer Wu, Ting Jin, Hao Dong, Shurong Xuan, Weipeng Xu, Hongsheng Lu, Leihe Fang, Zijing Huang, Shuyi Tao, Xiang Shi, Lin Liu, Shuting Luo, Jikui Sensors (Basel) Article This paper reports a novel flexible film bulk acoustic resonator (FBAR) based on [Formula: see text]-phase polyvinylidene fluoride (PVDF) piezoelectric polymer. The proposed device was simulated and evaluated; then, a low-temperature photolithography process with a double exposure method was developed to pattern the electrodes for the device, which enabled the device to retain the piezoelectric properties of the [Formula: see text]-phase PVDF film. Results showed that the β-phase PVDF FBARs had a resonant frequency round 9.212 [Formula: see text] with a high electromechanical coupling coefficient ([Formula: see text]) of 12.76% ± 0.56%. The device performed well over a wide bending-strain range up to 2400 [Formula: see text] owing to its excellent flexibility. It showed good stability as a strain sensor with a sensitivity of 80 [Formula: see text] , and no visible deterioration was observed after cyclic bending tests. The PVDF FBAR also exhibited an exceptionally large temperature coefficient of frequency (TCF) of −4630 [Formula: see text] , two orders of magnitude larger than those of other FBARs based on common inorganic piezoelectric materials, extraordinarily high sensitivity for temperature sensing. All results showed that [Formula: see text]-phase PVDF FBARs have the potential to expand the application scope for future flexible electronics. MDPI 2020-02-29 /pmc/articles/PMC7085767/ /pubmed/32121461 http://dx.doi.org/10.3390/s20051346 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wu, Ting
Jin, Hao
Dong, Shurong
Xuan, Weipeng
Xu, Hongsheng
Lu, Leihe
Fang, Zijing
Huang, Shuyi
Tao, Xiang
Shi, Lin
Liu, Shuting
Luo, Jikui
A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer
title A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer
title_full A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer
title_fullStr A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer
title_full_unstemmed A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer
title_short A Flexible Film Bulk Acoustic Resonator Based on β-Phase Polyvinylidene Fluoride Polymer
title_sort flexible film bulk acoustic resonator based on β-phase polyvinylidene fluoride polymer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085767/
https://www.ncbi.nlm.nih.gov/pubmed/32121461
http://dx.doi.org/10.3390/s20051346
work_keys_str_mv AT wuting aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT jinhao aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT dongshurong aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT xuanweipeng aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT xuhongsheng aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT luleihe aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT fangzijing aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT huangshuyi aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT taoxiang aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT shilin aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT liushuting aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT luojikui aflexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT wuting flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT jinhao flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT dongshurong flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT xuanweipeng flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT xuhongsheng flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT luleihe flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT fangzijing flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT huangshuyi flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT taoxiang flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT shilin flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT liushuting flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer
AT luojikui flexiblefilmbulkacousticresonatorbasedonbphasepolyvinylidenefluoridepolymer