Cargando…

An in vivo cell-based assay for investigating the specific interaction between the SARS-CoV N-protein and its viral RNA packaging sequence

The SARS-CoV nucleocapsid (N) protein serves multiple functions in viral replication, transcription, and assembly of the viral genome complex. Coronaviruses specifically package genomic RNA into assembled virions, and in SARS-CoV, it is reported that this process is driven by an interaction between...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Jiwon, Lee, Eunice Yoojin, Lee, Mirae, Kim, Taeyeon, Cho, Yong-Eun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092827/
https://www.ncbi.nlm.nih.gov/pubmed/31594639
http://dx.doi.org/10.1016/j.bbrc.2019.09.115
Descripción
Sumario:The SARS-CoV nucleocapsid (N) protein serves multiple functions in viral replication, transcription, and assembly of the viral genome complex. Coronaviruses specifically package genomic RNA into assembled virions, and in SARS-CoV, it is reported that this process is driven by an interaction between the N-protein and a packaging signal encoded within the viral RNA. While recent studies have uncovered the sequence of this packaging signal, little is known about the specific interaction between the N-protein and the packaging signal sequence, and the mechanisms by which this interaction drives viral genome packaging. In this study, we developed a novel in vivo cell-based assay for examining this interaction between the N-protein and packaging signal RNA for SARS-CoV, as well as other viruses within the coronaviridae family. Our results demonstrate that the N-protein specifically recognizes the SARS-CoV packaging signal with greater affinity compared to signals from other coronaviruses or non-coronavirus species. We also use deletion mapping to identify a 151-nt region within the packaging signal sequence that is critical for N-protein-RNA binding, and conversely, we show that both the N-terminal and C-terminal domains of the N protein are necessary for recognizing the packaging RNA. These results describe, for the first time, in vivo evidence for an interaction between the SARS-CoV N-protein and its packaging signal RNA, and demonstrate the feasibility of using this cell-based assay to further probe viral RNA-protein interactions in future studies.