Cargando…

Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human α(1)β(2)γ(2L) GABA(A) receptor and spontaneous neuronal network function in vitro

Concerns about the neurotoxic potential of polyfluoroalkyl substances (PFAS) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) increase, although their neurotoxic mechanisms of action remain debated. Considering the importance of the GABA(A) receptor in neuronal function, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Tukker, Anke M., Bouwman, Lianne M. S., van Kleef, Regina G. D. M., Hendriks, Hester S., Legler, Juliette, Westerink, Remco H. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093421/
https://www.ncbi.nlm.nih.gov/pubmed/32210279
http://dx.doi.org/10.1038/s41598-020-62152-2
Descripción
Sumario:Concerns about the neurotoxic potential of polyfluoroalkyl substances (PFAS) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) increase, although their neurotoxic mechanisms of action remain debated. Considering the importance of the GABA(A) receptor in neuronal function, we investigated acute effects of PFAS on this receptor and on spontaneous neuronal network activity. PFOS (Lowest Observed Effect Concentration (LOEC) 0.1 µM) and PFOA (LOEC 1 µM) inhibited the GABA-evoked current and acted as non-competitive human GABA(A) receptor antagonists. Network activity of rat primary cortical cultures increased following exposure to PFOS (LOEC 100 µM). However, exposure of networks of human induced pluripotent stem cell (hiPSC)-derived neurons decreased neuronal activity. The higher sensitivity of the α(1)β(2)γ(2L) GABA(A) receptor for PFAS as compared to neuronal networks suggests that PFAS have additional mechanisms of action, or that compensatory mechanisms are at play. Differences between rodent and hiPSC-derived neuronal networks highlight the importance of proper model composition. LOECs for PFAS on GABA(A) receptor and neuronal activity reported here are within or below the range found in blood levels of occupationally exposed humans. For PFOS, LOECs are even within the range found in human serum and plasma of the general population, suggesting a clear neurotoxic risk.