Cargando…

Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information

Deconvolution of bulk transcriptomics data from mixed cell populations is vital to identify the cellular mechanism of complex diseases. Existing deconvolution approaches can be divided into two major groups: supervised and unsupervised methods. Supervised deconvolution methods use cell type-specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Li, Kollipara, Avinash, Darville, Toni, Zou, Fei, Zheng, Xiaojing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096458/
https://www.ncbi.nlm.nih.gov/pubmed/32214192
http://dx.doi.org/10.1038/s41598-020-62330-2
Descripción
Sumario:Deconvolution of bulk transcriptomics data from mixed cell populations is vital to identify the cellular mechanism of complex diseases. Existing deconvolution approaches can be divided into two major groups: supervised and unsupervised methods. Supervised deconvolution methods use cell type-specific prior information including cell proportions, reference cell type-specific gene signatures, or marker genes for each cell type, which may not be available in practice. Unsupervised methods, such as non-negative matrix factorization (NMF) and Convex Analysis of Mixtures (CAM), in contrast, completely disregard prior information and thus are not efficient for data with partial cell type-specific information. In this paper, we propose a semi-supervised deconvolution method, semi-CAM, that extends CAM by utilizing marker information from partial cell types. Analysis of simulation and two benchmark data have demonstrated that semi-CAM outperforms CAM by yielding more accurate cell proportion estimations when markers from partial/all cell types are available. In addition, when markers from all cell types are available, semi-CAM achieves better or similar accuracy compared to the supervised method using signature genes, CIBERSORT, and the marker-based supervised methods semi-NMF and DSA. Furthermore, analysis of human chlamydia-infection data with bulk expression profiles from six cell types and prior marker information of only three cell types suggests that semi-CAM achieves more accurate cell proportion estimations than CAM.