Cargando…
Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information
Deconvolution of bulk transcriptomics data from mixed cell populations is vital to identify the cellular mechanism of complex diseases. Existing deconvolution approaches can be divided into two major groups: supervised and unsupervised methods. Supervised deconvolution methods use cell type-specific...
Autores principales: | Dong, Li, Kollipara, Avinash, Darville, Toni, Zou, Fei, Zheng, Xiaojing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096458/ https://www.ncbi.nlm.nih.gov/pubmed/32214192 http://dx.doi.org/10.1038/s41598-020-62330-2 |
Ejemplares similares
-
SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning
por: Coleman, Kyle, et al.
Publicado: (2023) -
scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics
por: Dong, Jiayi, et al.
Publicado: (2022) -
Variational Information Bottleneck for Semi-Supervised Classification
por: Voloshynovskiy, Slava, et al.
Publicado: (2020) -
SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples
por: Zhang, Ze, et al.
Publicado: (2019) -
Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer
por: Lei, Haoyun, et al.
Publicado: (2022)