Cargando…

Cytotoxic T lymphocyte-associated antigen-4-Ig (CTLA-4-Ig) suppresses Staphylococcus aureus-induced CD80, CD86, and pro-inflammatory cytokine expression in human B cells

BACKGROUND: Cytotoxic T lymphocyte-associated antigen-4-Ig (CTLA-4-Ig) competes with CD28 for binding CD80/CD86 on antigen-presenting cells (APCs) to limit T cell activation. B cells are believed to be important APCs in the pathogenesis of autoimmune diseases and express CD80/CD86 after activation;...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Po-Chun, Ssu, Chih-Tai, Tsao, Yen-Po, Liou, Teh-Ling, Tsai, Chang-Youh, Chou, Chung-Tei, Chen, Ming-Han, Leu, Chuen-Miin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106629/
https://www.ncbi.nlm.nih.gov/pubmed/32228715
http://dx.doi.org/10.1186/s13075-020-2138-x
Descripción
Sumario:BACKGROUND: Cytotoxic T lymphocyte-associated antigen-4-Ig (CTLA-4-Ig) competes with CD28 for binding CD80/CD86 on antigen-presenting cells (APCs) to limit T cell activation. B cells are believed to be important APCs in the pathogenesis of autoimmune diseases and express CD80/CD86 after activation; however, relatively little is known about the effect of CTLA-4-Ig on B cells. This study tested the impact of CTLA-4-Ig on human B cell responses. METHODS: Human blood B cells were purified from healthy donors and activated in the presence of CTLA-4-Ig or the L6-Ig control protein in vitro. RT-q-PCR and immunofluorescence staining were performed to detect activation marker expression. ELISA was conducted to measure cytokine secretion. The CD80/CD86 levels on the surface of the memory B cells in the blood of 18 patients with rheumatoid arthritis (RA) were detected using immunofluorescence staining. RESULTS: CTLA-4-Ig suppressed the expression of Staphylococcus aureus (SAC)-induced CD80, CD86, TNFA, and IL6 in human B cells at the transcriptional level. Furthermore, CTLA-4-Ig concomitantly decreased SAC-induced CD80/CD86 surface expression on and TNF-α and IL-6 secretion from B cells. On the other hand, T cell-dependent (TD) stimulation-induced B cell activation, proliferation, plasma cell differentiation, and antibody secretion were not affected by CTLA-4-Ig. As expected, TD stimulation-induced surface CD80 was hindered by CTLA-4-Ig. Notably, a blockade of CD80/CD86 on the surface of the memory B cells was observed in the patients with RA after abatacept (CTLA-4-Ig) treatment. In a portion of the RA patients, restoration of CD80/CD86 staining on the surface of the memory B was detected starting in the 3rd month of abatacept treatment. Interestingly, the surface levels of CD80/CD86 on the patients’ memory B cells positively correlated with disease activity. CONCLUSIONS: We found that CTLA-4-Ig directly suppressed SAC-induced B cell activation in vitro. Obstruction of CD80 and CD86 on the surface of the memory B cells was detected in the RA patients after abatacept treatment. Blocking CD80/CD86 on B cells by CTLA-4-Ig may hinder T cell activation and associated with the disease activity of RA in vivo. Our findings indicate that CTLA-4-Ig may regulate humoral responses by modulating B cell activation and interfering T cell-B cell interaction.