Cargando…

Palmitoylation of the Alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S–M interaction

The spike protein S of coronaviruses contains a highly conserved cytoplasmic cysteine-rich motif adjacent to the transmembrane region. This motif is palmitoylated in the Betacoronaviruses MHV and SARS-CoV. Here, we demonstrate by metabolic labeling with [(3)H]-palmitic acid that the S protein of tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Gelhaus, Sandra, Thaa, Bastian, Eschke, Kathrin, Veit, Michael, Schwegmann-Weßels, Christel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112097/
https://www.ncbi.nlm.nih.gov/pubmed/25113909
http://dx.doi.org/10.1016/j.virol.2014.07.035
Descripción
Sumario:The spike protein S of coronaviruses contains a highly conserved cytoplasmic cysteine-rich motif adjacent to the transmembrane region. This motif is palmitoylated in the Betacoronaviruses MHV and SARS-CoV. Here, we demonstrate by metabolic labeling with [(3)H]-palmitic acid that the S protein of transmissible gastroenteritis coronavirus (TGEV), an Alphacoronavirus, is palmitoylated as well. This is relevant for TGEV replication as virus growth was compromised by the general palmitoylation inhibitor 2-bromopalmitate. Mutation of individual cysteine clusters in the cysteine-rich motif of S revealed that all cysteines must be replaced to abolish acylation and incorporation of S into virus-like particles (VLP). Conversely, the interaction of S with the M protein, essential for VLP incorporation of S, was not impaired by lack of palmitoylation. Thus, palmitoylation of the S protein of Alphacoronaviruses is dispensable for S–M interaction, but required for the generation of progeny virions.