Cargando…

Development of robust in vitro RNA-dependent RNA polymerase assay as a possible platform for antiviral drug testing against dengue

NS5 is the largest and most conserved protein among the four dengue virus (DENV) serotypes. It has been the target of interest for antiviral drug development due to its major role in replication. NS5 consists of two domains, the N-terminal methyltransferase domain and C-terminal catalytic RNA-depend...

Descripción completa

Detalles Bibliográficos
Autores principales: Amraiz, Deeba, Zaidi, Najam-us-Sahar Sadaf, Fatima, Munazza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112394/
https://www.ncbi.nlm.nih.gov/pubmed/27542741
http://dx.doi.org/10.1016/j.enzmictec.2016.06.010
Descripción
Sumario:NS5 is the largest and most conserved protein among the four dengue virus (DENV) serotypes. It has been the target of interest for antiviral drug development due to its major role in replication. NS5 consists of two domains, the N-terminal methyltransferase domain and C-terminal catalytic RNA-dependent RNA polymerase (RdRp) domain. It is an unstable protein and is prone to inactivation upon prolonged incubation at room temperature, thus affecting the inhibitor screening assays. In the current study, we expressed and purified DENV RdRp alone in Esherichia coli (E. coli) cells. The N-terminally His-tagged construct of DENV RdRp was transformed into E. coli expression strain BL-21 (DE3) pLysS cells. Protein expression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) at a final concentration of 0.4 mM. The induced cultures were then grown for 20 h at 18 °C and cells were harvested by centrifugation at 6000 x g for 15 min at 4 °C. The recombinant protein was purified using HisTrap affinity column (Ni-NTA) and then the sample was subjected to size exclusion chromatography, which successfully removed the degradation product obtained during the previous purification step. The in vitro polymerase activity of RdRp was successfully demonstrated using homopolymeric polycytidylic acid (poly(rC)) RNA template. This study describes the high level production of enzymatically active DENV RdRp protein which can be used to develop assays for testing large number of compounds in a high-throughput manner. RdRp has the de novo initiation activity and the in vitro polymerase assays for the protein provide a platform for highly robust and efficient antiviral compound screening systems.