Cargando…
Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation
Mechanical forces play important roles in development, physiology, and diseases, but how force is transduced into gene transcription remains elusive. Here, we show that transcription of transgene DHFR or endogenous genes egr-1 and Cav1 is rapidly up-regulated in response to cyclic forces applied via...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112933/ https://www.ncbi.nlm.nih.gov/pubmed/32270037 http://dx.doi.org/10.1126/sciadv.aay9095 |
_version_ | 1783513574822379520 |
---|---|
author | Sun, Jian Chen, Junwei Mohagheghian, Erfan Wang, Ning |
author_facet | Sun, Jian Chen, Junwei Mohagheghian, Erfan Wang, Ning |
author_sort | Sun, Jian |
collection | PubMed |
description | Mechanical forces play important roles in development, physiology, and diseases, but how force is transduced into gene transcription remains elusive. Here, we show that transcription of transgene DHFR or endogenous genes egr-1 and Cav1 is rapidly up-regulated in response to cyclic forces applied via integrins at low frequencies but not at 100 Hz. Gene up-regulation does not follow the weak power law with force frequency. Force-induced transcription up-regulation at the nuclear interior is associated with demethylation of histone H3 lysine-9 trimethylation (H3K9me3), whereas no transcription up-regulation near the nuclear periphery is associated with H3K9me3 that inhibits Pol II recruitment to the promoter site. H3K9me3 demethylation induces Pol II recruitment and increases force-induced transcription of egr-1 and Cav1 at the nuclear interior and activates mechano-nonresponsive gene FKBP5 near the nuclear periphery, whereas H3K9me3 hypermethylation has opposite effects. Our findings demonstrate that rapid up-regulation of endogenous mechanoresponsive genes depends on H3K9me3 demethylation. |
format | Online Article Text |
id | pubmed-7112933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71129332020-04-08 Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation Sun, Jian Chen, Junwei Mohagheghian, Erfan Wang, Ning Sci Adv Research Articles Mechanical forces play important roles in development, physiology, and diseases, but how force is transduced into gene transcription remains elusive. Here, we show that transcription of transgene DHFR or endogenous genes egr-1 and Cav1 is rapidly up-regulated in response to cyclic forces applied via integrins at low frequencies but not at 100 Hz. Gene up-regulation does not follow the weak power law with force frequency. Force-induced transcription up-regulation at the nuclear interior is associated with demethylation of histone H3 lysine-9 trimethylation (H3K9me3), whereas no transcription up-regulation near the nuclear periphery is associated with H3K9me3 that inhibits Pol II recruitment to the promoter site. H3K9me3 demethylation induces Pol II recruitment and increases force-induced transcription of egr-1 and Cav1 at the nuclear interior and activates mechano-nonresponsive gene FKBP5 near the nuclear periphery, whereas H3K9me3 hypermethylation has opposite effects. Our findings demonstrate that rapid up-regulation of endogenous mechanoresponsive genes depends on H3K9me3 demethylation. American Association for the Advancement of Science 2020-04-01 /pmc/articles/PMC7112933/ /pubmed/32270037 http://dx.doi.org/10.1126/sciadv.aay9095 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Sun, Jian Chen, Junwei Mohagheghian, Erfan Wang, Ning Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation |
title | Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation |
title_full | Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation |
title_fullStr | Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation |
title_full_unstemmed | Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation |
title_short | Force-induced gene up-regulation does not follow the weak power law but depends on H3K9 demethylation |
title_sort | force-induced gene up-regulation does not follow the weak power law but depends on h3k9 demethylation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112933/ https://www.ncbi.nlm.nih.gov/pubmed/32270037 http://dx.doi.org/10.1126/sciadv.aay9095 |
work_keys_str_mv | AT sunjian forceinducedgeneupregulationdoesnotfollowtheweakpowerlawbutdependsonh3k9demethylation AT chenjunwei forceinducedgeneupregulationdoesnotfollowtheweakpowerlawbutdependsonh3k9demethylation AT mohagheghianerfan forceinducedgeneupregulationdoesnotfollowtheweakpowerlawbutdependsonh3k9demethylation AT wangning forceinducedgeneupregulationdoesnotfollowtheweakpowerlawbutdependsonh3k9demethylation |