Cargando…

Identification of a peptide derived from the heptad repeat 2 region of the porcine epidemic diarrhea virus (PEDV) spike glycoprotein that is capable of suppressing PEDV entry and inducing neutralizing antibodies

Heptad repeat (HR) regions are highly conserved motifs located in the glycoproteins of enveloped viruses that form a six-helix bundle structure and is important in the process of virus fusion. Peptides derived from the HR regions of some viruses have also been shown to inhibit viral entry. Porcine e...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Pengwei, Wang, Bin, Ji, Chun-Miao, Cong, Xiaoyan, Wang, Ming, Huang, Yao-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113693/
https://www.ncbi.nlm.nih.gov/pubmed/29203391
http://dx.doi.org/10.1016/j.antiviral.2017.11.021
Descripción
Sumario:Heptad repeat (HR) regions are highly conserved motifs located in the glycoproteins of enveloped viruses that form a six-helix bundle structure and is important in the process of virus fusion. Peptides derived from the HR regions of some viruses have also been shown to inhibit viral entry. Porcine epidemic diarrhea virus (PEDV) was predicted to have HR regions (HR1 and HR2) in the spike glycoprotein S2 subunit. Based on this analysis, six peptides derived from HR1 and HR2 were selected, expressed in Escherichia coli, purified, and characterized. Three peptides (HR2M, HR2L and HR2P) were identified as potential competitive inhibitors in PEDV in vitro infection assays, with the HR2P peptide representing the most potent inhibitor. Further study indicated that immunization of HR2P in mice elicited antibodies capable of neutralizing PEDV infection in vitro. These results demonstrate that the HR2P peptide and anti-HR2P antibody can serve as a tool for dissecting the fusion mechanism of PEDV, guiding the search for potent inhibitors with therapeutic value against PEDV infection.