Cargando…
Application of machine learning techniques to electron microscopic/spectroscopic image data analysis
The combination of scanning transmission electron microscopy (STEM) with analytical instruments has become one of the most indispensable analytical tools in materials science. A set of microscopic image/spectral intensities collected from many sampling points in a region of interest, in which multip...
Autores principales: | Muto, Shunsuke, Shiga, Motoki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141894/ https://www.ncbi.nlm.nih.gov/pubmed/31682260 http://dx.doi.org/10.1093/jmicro/dfz036 |
Ejemplares similares
-
Generative and discriminative model-based approaches to microscopic image restoration and segmentation
por: Ishii, Shin, et al.
Publicado: (2020) -
COVID-19 severity detection using machine learning techniques from CT-images
por: Aswathy, A. L., et al.
Publicado: (2022) -
Application of a Deep Machine Learning Model for Automatic Measurement of EZ Width in SD-OCT Images of RP
por: Wang, Yi-Zhong, et al.
Publicado: (2020) -
Accelerated MR spectroscopic imaging—a review of current and emerging techniques
por: Bogner, Wolfgang, et al.
Publicado: (2020) -
Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology
por: Lin, Wei-Chun, et al.
Publicado: (2020)