Cargando…

Immunoreactivity of Lupine and Soybean Allergens in Foods as Affected by Thermal Processing

Lupine and soybean are important technological aids for the food industry. However, they are also capable of inducing severe allergic reactions in food-sensitized/allergic individuals. In this context, this work intended to study the combined effects of thermal processing and food matrix on the immu...

Descripción completa

Detalles Bibliográficos
Autores principales: Villa, Caterina, Moura, Mónica B. M. V., Costa, Joana, Mafra, Isabel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142587/
https://www.ncbi.nlm.nih.gov/pubmed/32120788
http://dx.doi.org/10.3390/foods9030254
Descripción
Sumario:Lupine and soybean are important technological aids for the food industry. However, they are also capable of inducing severe allergic reactions in food-sensitized/allergic individuals. In this context, this work intended to study the combined effects of thermal processing and food matrix on the immunoreactivity of lupine and soybean proteins used as ingredients in bakery and meat products, respectively. For this purpose, the effects of baking, mild oven cooking, and autoclaving on the protein profiles were evaluated, using model mixtures simulating the production of lupine-containing breads and soybean-containing cooked hams/sausages, by native- and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblotting using specific antibodies. The results showed that lupine gamma-conglutin immunoreactivity was slightly decreased in wheat flour mixtures compared to rice, but it was more pronounced in baked products. In meat mixtures, substantial protein fragmentation was noted after autoclaving, with decreased immunoreactivity of soybean trypsin inhibitor. The analysis of 22 commercial products enabled the identification of lupine gamma-conglutin in four bakery samples and soybean trypsin-inhibitor in five sausages, and further differentiated autoclaved from other milder thermally treated products. Generally, the immunoreactivity of target proteins was reduced by all the tested thermal treatments, though at a higher extent after autoclaving, being slightly altered by the food matrix.