Cargando…

Powder Filling and Sintering of 3D In-chip Solenoid Coils with High Aspect Ratio Structure

In this study, a 3D coil embedded in a silicon substrate including densely distributed through-silicon vias (TSVs) was fabricated via a rapid metal powder sintering process. The filling and sintering methods for microdevices were evaluated, and the effects of powder types were compared. The paramete...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yujia, Li, Haiwang, Sun, Jiamian, Zhai, Yanxin, Li, Hanqing, Xu, Tiantong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142785/
https://www.ncbi.nlm.nih.gov/pubmed/32235795
http://dx.doi.org/10.3390/mi11030328
Descripción
Sumario:In this study, a 3D coil embedded in a silicon substrate including densely distributed through-silicon vias (TSVs) was fabricated via a rapid metal powder sintering process. The filling and sintering methods for microdevices were evaluated, and the effects of powder types were compared. The parameters influencing the properties and processing speed were analyzed. The results showed that the pre-alloyed powder exhibited the best uniformity and stability when the experiment used two or more types of powders to avoid the segregation effect. The smaller the particle diameter, the better the inductive performance will be. The entire structure can be sintered near the melting point of the alloy, and increasing the temperature increases strength, while resulting in low resistivity. Finally, an 800-µm-high coil was fabricated. This process does not need surface metallization and seed layer formation. The forming process involves only sintering instead of slowly growing copper with a tiny current. Therefore, this process has advantages, such as a process time of 7 h, corresponding to an 84% reduction compared to current electroplating processes (45 h), and a 543% efficiency improvement. Thus, this process is more efficient, controllable, stable, and suitable for mass production of devices with flexible dimensions.