Cargando…

A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO(2) Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium

Screening of foodborne pathogens is an effective way to prevent microbial food poisoning. A microfluidic biosensor was developed for rapid and sensitive detection of Salmonella Typhimurium using quantum dots (QDs) as fluorescent probes for sensor readout and manganese dioxide nanoflowers (MnO(2) NFs...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Li, Xue, Li, Huang, Fengchun, Cai, Gaozhe, Qi, Wuzhen, Zhang, Miao, Han, Qing’an, Wang, Zengli, Lin, Jianhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143389/
https://www.ncbi.nlm.nih.gov/pubmed/32182880
http://dx.doi.org/10.3390/mi11030281
_version_ 1783519600799907840
author Hao, Li
Xue, Li
Huang, Fengchun
Cai, Gaozhe
Qi, Wuzhen
Zhang, Miao
Han, Qing’an
Wang, Zengli
Lin, Jianhan
author_facet Hao, Li
Xue, Li
Huang, Fengchun
Cai, Gaozhe
Qi, Wuzhen
Zhang, Miao
Han, Qing’an
Wang, Zengli
Lin, Jianhan
author_sort Hao, Li
collection PubMed
description Screening of foodborne pathogens is an effective way to prevent microbial food poisoning. A microfluidic biosensor was developed for rapid and sensitive detection of Salmonella Typhimurium using quantum dots (QDs) as fluorescent probes for sensor readout and manganese dioxide nanoflowers (MnO(2) NFs) and as QDs nanocarriers for signal amplification. Prior to testing, amino-modified MnO(2) nanoflowers (MnO(2)-NH(2) NFs) were conjugated with carboxyl-modified QDs through EDC/NHSS method to form MnO(2)-QD NFs, and MnO(2)-QD NFs were functionalized with polyclonal antibodies (pAbs) to form MnO(2)-QD-pAb NFs. First, the mixture of target Salmonella Typhimurium cells and magnetic nanoparticles (MNPs) modified with monoclonal antibodies (mAbs) was injected with MnO(2)-QD-pAb NFs into a microfluidic chip to form MNP-bacteria-QD-MnO(2) complexes. Then, glutathione (GSH) was injected to dissolve MnO(2) on the complexes into Mn(2+), resulting in the release of QDs. Finally, fluorescent intensity of the released QDs was measured using the fluorescent detector to determine the amount of Salmonella. A linear relationship between fluorescent intensity and bacterial concentration from 1.0 × 10(2) to 1.0 × 10(7) CFU/mL was found with a low detection limit of 43 CFU/mL and mean recovery of 99.7% for Salmonella in spiked chicken meats, indicating the feasibility of this biosensor for practical applications.
format Online
Article
Text
id pubmed-7143389
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71433892020-04-14 A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO(2) Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium Hao, Li Xue, Li Huang, Fengchun Cai, Gaozhe Qi, Wuzhen Zhang, Miao Han, Qing’an Wang, Zengli Lin, Jianhan Micromachines (Basel) Article Screening of foodborne pathogens is an effective way to prevent microbial food poisoning. A microfluidic biosensor was developed for rapid and sensitive detection of Salmonella Typhimurium using quantum dots (QDs) as fluorescent probes for sensor readout and manganese dioxide nanoflowers (MnO(2) NFs) and as QDs nanocarriers for signal amplification. Prior to testing, amino-modified MnO(2) nanoflowers (MnO(2)-NH(2) NFs) were conjugated with carboxyl-modified QDs through EDC/NHSS method to form MnO(2)-QD NFs, and MnO(2)-QD NFs were functionalized with polyclonal antibodies (pAbs) to form MnO(2)-QD-pAb NFs. First, the mixture of target Salmonella Typhimurium cells and magnetic nanoparticles (MNPs) modified with monoclonal antibodies (mAbs) was injected with MnO(2)-QD-pAb NFs into a microfluidic chip to form MNP-bacteria-QD-MnO(2) complexes. Then, glutathione (GSH) was injected to dissolve MnO(2) on the complexes into Mn(2+), resulting in the release of QDs. Finally, fluorescent intensity of the released QDs was measured using the fluorescent detector to determine the amount of Salmonella. A linear relationship between fluorescent intensity and bacterial concentration from 1.0 × 10(2) to 1.0 × 10(7) CFU/mL was found with a low detection limit of 43 CFU/mL and mean recovery of 99.7% for Salmonella in spiked chicken meats, indicating the feasibility of this biosensor for practical applications. MDPI 2020-03-09 /pmc/articles/PMC7143389/ /pubmed/32182880 http://dx.doi.org/10.3390/mi11030281 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hao, Li
Xue, Li
Huang, Fengchun
Cai, Gaozhe
Qi, Wuzhen
Zhang, Miao
Han, Qing’an
Wang, Zengli
Lin, Jianhan
A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO(2) Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium
title A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO(2) Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium
title_full A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO(2) Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium
title_fullStr A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO(2) Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium
title_full_unstemmed A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO(2) Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium
title_short A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO(2) Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium
title_sort microfluidic biosensor based on magnetic nanoparticle separation, quantum dots labeling and mno(2) nanoflower amplification for rapid and sensitive detection of salmonella typhimurium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143389/
https://www.ncbi.nlm.nih.gov/pubmed/32182880
http://dx.doi.org/10.3390/mi11030281
work_keys_str_mv AT haoli amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT xueli amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT huangfengchun amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT caigaozhe amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT qiwuzhen amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT zhangmiao amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT hanqingan amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT wangzengli amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT linjianhan amicrofluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT haoli microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT xueli microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT huangfengchun microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT caigaozhe microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT qiwuzhen microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT zhangmiao microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT hanqingan microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT wangzengli microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium
AT linjianhan microfluidicbiosensorbasedonmagneticnanoparticleseparationquantumdotslabelingandmno2nanofloweramplificationforrapidandsensitivedetectionofsalmonellatyphimurium