Cargando…
One-Step Femtosecond Laser Stealth Dicing of Quartz
We report on a one-step method for cutting 250-µm-thick quartz plates using highly focused ultrashort laser pulses with a duration of 200 fs and a wavelength of 1030 nm. We show that the repetition rate, the scan speed, the pulse overlap and the pulse energy directly influence the cutting process an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143800/ https://www.ncbi.nlm.nih.gov/pubmed/32235686 http://dx.doi.org/10.3390/mi11030327 |
_version_ | 1783519696951181312 |
---|---|
author | Gaudiuso, Caterina Volpe, Annalisa Ancona, Antonio |
author_facet | Gaudiuso, Caterina Volpe, Annalisa Ancona, Antonio |
author_sort | Gaudiuso, Caterina |
collection | PubMed |
description | We report on a one-step method for cutting 250-µm-thick quartz plates using highly focused ultrashort laser pulses with a duration of 200 fs and a wavelength of 1030 nm. We show that the repetition rate, the scan speed, the pulse overlap and the pulse energy directly influence the cutting process and quality. Therefore, a suitable choice of these parameters was necessary to get single-pass stealth dicing with neat and flat cut edges. The mechanism behind the stealth dicing process was ascribed to tensile stresses generated by the relaxation of the compressive stresses originated in the laser beam focal volume during irradiation in the bulk material. Such stresses produced micro-fractures whose controlled propagation along the laser beam path led to cutting of the samples. |
format | Online Article Text |
id | pubmed-7143800 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71438002020-04-14 One-Step Femtosecond Laser Stealth Dicing of Quartz Gaudiuso, Caterina Volpe, Annalisa Ancona, Antonio Micromachines (Basel) Article We report on a one-step method for cutting 250-µm-thick quartz plates using highly focused ultrashort laser pulses with a duration of 200 fs and a wavelength of 1030 nm. We show that the repetition rate, the scan speed, the pulse overlap and the pulse energy directly influence the cutting process and quality. Therefore, a suitable choice of these parameters was necessary to get single-pass stealth dicing with neat and flat cut edges. The mechanism behind the stealth dicing process was ascribed to tensile stresses generated by the relaxation of the compressive stresses originated in the laser beam focal volume during irradiation in the bulk material. Such stresses produced micro-fractures whose controlled propagation along the laser beam path led to cutting of the samples. MDPI 2020-03-22 /pmc/articles/PMC7143800/ /pubmed/32235686 http://dx.doi.org/10.3390/mi11030327 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gaudiuso, Caterina Volpe, Annalisa Ancona, Antonio One-Step Femtosecond Laser Stealth Dicing of Quartz |
title | One-Step Femtosecond Laser Stealth Dicing of Quartz |
title_full | One-Step Femtosecond Laser Stealth Dicing of Quartz |
title_fullStr | One-Step Femtosecond Laser Stealth Dicing of Quartz |
title_full_unstemmed | One-Step Femtosecond Laser Stealth Dicing of Quartz |
title_short | One-Step Femtosecond Laser Stealth Dicing of Quartz |
title_sort | one-step femtosecond laser stealth dicing of quartz |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143800/ https://www.ncbi.nlm.nih.gov/pubmed/32235686 http://dx.doi.org/10.3390/mi11030327 |
work_keys_str_mv | AT gaudiusocaterina onestepfemtosecondlaserstealthdicingofquartz AT volpeannalisa onestepfemtosecondlaserstealthdicingofquartz AT anconaantonio onestepfemtosecondlaserstealthdicingofquartz |