Cargando…
Protein Engineering of a Pyridoxal-5′-Phosphate-Dependent l-Aspartate-α-Decarboxylase from Tribolium castaneum for β-Alanine Production
In the present study, a pyridoxal-5′-phosphate (PLP)-dependent L-aspartate-α-decarboxylase from Tribolium castaneum (TcPanD) was selected for protein engineering to efficiently produce β-alanine. A mutant TcPanD-R98H/K305S with a 2.45-fold higher activity than the wide type was selected through erro...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143960/ https://www.ncbi.nlm.nih.gov/pubmed/32178239 http://dx.doi.org/10.3390/molecules25061280 |
Sumario: | In the present study, a pyridoxal-5′-phosphate (PLP)-dependent L-aspartate-α-decarboxylase from Tribolium castaneum (TcPanD) was selected for protein engineering to efficiently produce β-alanine. A mutant TcPanD-R98H/K305S with a 2.45-fold higher activity than the wide type was selected through error-prone PCR, site-saturation mutagenesis, and 96-well plate screening technologies. The characterization of purified enzyme TcPanD-R98H/K305S showed that the optimal cofactor PLP concentration, temperature, and pH were 0.04% (m/v), 50 °C, and 7.0, respectively. The 1mM of Na(+), Ni(2+), Co(2+), K(+), and Ca(2+) stimulated the activity of TcPanD-R98H/K305S, while only 5 mM of Ni(2+) and Na(+) could increase its activity. The kinetic analysis indicated that TcPanD-R98H/K305S had a higher substrate affinity and enzymatic reaction rate than the wild enzyme. A total of 267 g/L substrate l-aspartic acid was consumed and 170.5 g/L of β-alanine with a molar conversion of 95.5% was obtained under the optimal condition and 5-L reactor fermentation. |
---|