Cargando…
Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody
OBJECTIVE: Monoclonal antibody derivatives are promising drugs for the treatment of various diseases due to their high matrix metalloproteinases (MMP) active site specificity. We studied the effects of a novel antibody, SDS3, which specifically recognizes the mature active site of MMP9/2 during vent...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145114/ https://www.ncbi.nlm.nih.gov/pubmed/32271823 http://dx.doi.org/10.1371/journal.pone.0231202 |
_version_ | 1783519941150900224 |
---|---|
author | Cohen, Lena Sagi, Irit Bigelman, Einat Solomonov, Inna Aloshin, Anna Ben-Shoshan, Jeremy Rozenbaum, Zach Keren, Gad Entin-Meer, Michal |
author_facet | Cohen, Lena Sagi, Irit Bigelman, Einat Solomonov, Inna Aloshin, Anna Ben-Shoshan, Jeremy Rozenbaum, Zach Keren, Gad Entin-Meer, Michal |
author_sort | Cohen, Lena |
collection | PubMed |
description | OBJECTIVE: Monoclonal antibody derivatives are promising drugs for the treatment of various diseases due to their high matrix metalloproteinases (MMP) active site specificity. We studied the effects of a novel antibody, SDS3, which specifically recognizes the mature active site of MMP9/2 during ventricular remodeling progression in a mouse model of chronic volume overload (VO). METHODS: VO was induced by creating an aortocaval fistula (ACF) in 10- to 12-week-old C57BL male mice. The VO-induced mice were treated with either vehicle control (PBS) or with SDS3 twice weekly by intraperitoneal (ip) injection. The relative changes in cardiac parameters between baseline (day 1) and end-point (day 30), were evaluated by echocardiography. The effects of SDS3 treatment on cardiac fibrosis, cardiomyocyte volume, and cardiac inflammation were tested by cardiac staining with Masson's trichrome, wheat Germ Agglutinin (WGA), and CD45, respectively. Serum levels of TNFα and IL-6 with and without SDS3 treatment were tested by ELISA. RESULTS: SDS3 significantly reduced cardiac dilatation, left ventricular (LV) mass, and cardiomyocyte hypertrophy compared to the vehicle treated animals. The antibody also reduced the heart-to-body weight ratio of the ACF animals to values comparable to those of the controls. Interestingly, the SDS3 group underwent significant reduction of cardiac inflammation and pro-inflammatory cytokine production, indicating a regulatory role for MMP9/2 in tissue remodeling, possibly by tumor necrosis factor alpha (TNFα) activation. In addition, significant changes in the expression of proteins related to mitochondrial function were observed in ACF animals, these changes were reversed following treatment with SDS3. CONCLUSION: The data suggest that MMP9/2 blockage with SDS3 attenuates myocardial remodeling associated with chronic VO by three potential pathways: downregulating the extracellular matrix proteolytic cleavage, reducing the cardiac inflammatory responses, and preserving the cardiac mitochondrial structure and function. |
format | Online Article Text |
id | pubmed-7145114 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71451142020-04-14 Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody Cohen, Lena Sagi, Irit Bigelman, Einat Solomonov, Inna Aloshin, Anna Ben-Shoshan, Jeremy Rozenbaum, Zach Keren, Gad Entin-Meer, Michal PLoS One Research Article OBJECTIVE: Monoclonal antibody derivatives are promising drugs for the treatment of various diseases due to their high matrix metalloproteinases (MMP) active site specificity. We studied the effects of a novel antibody, SDS3, which specifically recognizes the mature active site of MMP9/2 during ventricular remodeling progression in a mouse model of chronic volume overload (VO). METHODS: VO was induced by creating an aortocaval fistula (ACF) in 10- to 12-week-old C57BL male mice. The VO-induced mice were treated with either vehicle control (PBS) or with SDS3 twice weekly by intraperitoneal (ip) injection. The relative changes in cardiac parameters between baseline (day 1) and end-point (day 30), were evaluated by echocardiography. The effects of SDS3 treatment on cardiac fibrosis, cardiomyocyte volume, and cardiac inflammation were tested by cardiac staining with Masson's trichrome, wheat Germ Agglutinin (WGA), and CD45, respectively. Serum levels of TNFα and IL-6 with and without SDS3 treatment were tested by ELISA. RESULTS: SDS3 significantly reduced cardiac dilatation, left ventricular (LV) mass, and cardiomyocyte hypertrophy compared to the vehicle treated animals. The antibody also reduced the heart-to-body weight ratio of the ACF animals to values comparable to those of the controls. Interestingly, the SDS3 group underwent significant reduction of cardiac inflammation and pro-inflammatory cytokine production, indicating a regulatory role for MMP9/2 in tissue remodeling, possibly by tumor necrosis factor alpha (TNFα) activation. In addition, significant changes in the expression of proteins related to mitochondrial function were observed in ACF animals, these changes were reversed following treatment with SDS3. CONCLUSION: The data suggest that MMP9/2 blockage with SDS3 attenuates myocardial remodeling associated with chronic VO by three potential pathways: downregulating the extracellular matrix proteolytic cleavage, reducing the cardiac inflammatory responses, and preserving the cardiac mitochondrial structure and function. Public Library of Science 2020-04-09 /pmc/articles/PMC7145114/ /pubmed/32271823 http://dx.doi.org/10.1371/journal.pone.0231202 Text en © 2020 Cohen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Cohen, Lena Sagi, Irit Bigelman, Einat Solomonov, Inna Aloshin, Anna Ben-Shoshan, Jeremy Rozenbaum, Zach Keren, Gad Entin-Meer, Michal Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody |
title | Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody |
title_full | Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody |
title_fullStr | Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody |
title_full_unstemmed | Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody |
title_short | Cardiac remodeling secondary to chronic volume overload is attenuated by a novel MMP9/2 blocking antibody |
title_sort | cardiac remodeling secondary to chronic volume overload is attenuated by a novel mmp9/2 blocking antibody |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145114/ https://www.ncbi.nlm.nih.gov/pubmed/32271823 http://dx.doi.org/10.1371/journal.pone.0231202 |
work_keys_str_mv | AT cohenlena cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody AT sagiirit cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody AT bigelmaneinat cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody AT solomonovinna cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody AT aloshinanna cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody AT benshoshanjeremy cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody AT rozenbaumzach cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody AT kerengad cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody AT entinmeermichal cardiacremodelingsecondarytochronicvolumeoverloadisattenuatedbyanovelmmp92blockingantibody |