Cargando…
Surface Stabilization and Dissolution Rate Improvement of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All?
[Image: see text] The distinction between surface and bulk crystallization of amorphous pharmaceuticals, as well as the importance of surface crystallization for pharmaceutical performance, is becoming increasingly evident. An emerging strategy in stabilizing the amorphous drug form is to utilize th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145361/ https://www.ncbi.nlm.nih.gov/pubmed/32027513 http://dx.doi.org/10.1021/acs.molpharmaceut.9b01263 |
_version_ | 1783519987065946112 |
---|---|
author | Novakovic, Dunja Peltonen, Leena Isomäki, Antti Fraser-Miller, Sara J. Nielsen, Line Hagner Laaksonen, Timo Strachan, Clare J. |
author_facet | Novakovic, Dunja Peltonen, Leena Isomäki, Antti Fraser-Miller, Sara J. Nielsen, Line Hagner Laaksonen, Timo Strachan, Clare J. |
author_sort | Novakovic, Dunja |
collection | PubMed |
description | [Image: see text] The distinction between surface and bulk crystallization of amorphous pharmaceuticals, as well as the importance of surface crystallization for pharmaceutical performance, is becoming increasingly evident. An emerging strategy in stabilizing the amorphous drug form is to utilize thin coatings at the surface. While the physical stability of systems coated with pharmaceutical polymers has recently been studied, the effect on dissolution performance as a function of storage time, as a further necessary step toward the success of these formulations, has not been previously studied. Furthermore, the effect of coating thickness has not been elucidated. This study investigated the effect of these polymer-coating parameters on the interplay between amorphous surface crystallization and drug dissolution for the first time. The study utilized simple tablet-like coated dosage forms, comprising a continuous amorphous drug core and thin polymer coating (hundreds of nanometers to a micrometer thick). Monitoring included analysis of both the solid-state of the model drug (with SEM, XRD, and ATR FTIR spectroscopy) and dissolution performance (and associated morphology and solid-state changes) after different storage times. Stabilization of the amorphous form (dependent on the coating thickness) and maintenance of early-stage intrinsic dissolution rates characteristic for the unaged amorphous drug were achieved. However, dissolution in the latter stages was likely inhibited by the presence of a polymer at the surface. Overall, this study introduced a versatile coated system for studying the dissolution of thin-coated amorphous dosage forms suitable for different drugs and coating agents. It demonstrated the importance of multiple factors that need to be taken into consideration when aiming to achieve both physical stability and improved release during the shelf life of amorphous formulations. |
format | Online Article Text |
id | pubmed-7145361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American
Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71453612020-04-10 Surface Stabilization and Dissolution Rate Improvement of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All? Novakovic, Dunja Peltonen, Leena Isomäki, Antti Fraser-Miller, Sara J. Nielsen, Line Hagner Laaksonen, Timo Strachan, Clare J. Mol Pharm [Image: see text] The distinction between surface and bulk crystallization of amorphous pharmaceuticals, as well as the importance of surface crystallization for pharmaceutical performance, is becoming increasingly evident. An emerging strategy in stabilizing the amorphous drug form is to utilize thin coatings at the surface. While the physical stability of systems coated with pharmaceutical polymers has recently been studied, the effect on dissolution performance as a function of storage time, as a further necessary step toward the success of these formulations, has not been previously studied. Furthermore, the effect of coating thickness has not been elucidated. This study investigated the effect of these polymer-coating parameters on the interplay between amorphous surface crystallization and drug dissolution for the first time. The study utilized simple tablet-like coated dosage forms, comprising a continuous amorphous drug core and thin polymer coating (hundreds of nanometers to a micrometer thick). Monitoring included analysis of both the solid-state of the model drug (with SEM, XRD, and ATR FTIR spectroscopy) and dissolution performance (and associated morphology and solid-state changes) after different storage times. Stabilization of the amorphous form (dependent on the coating thickness) and maintenance of early-stage intrinsic dissolution rates characteristic for the unaged amorphous drug were achieved. However, dissolution in the latter stages was likely inhibited by the presence of a polymer at the surface. Overall, this study introduced a versatile coated system for studying the dissolution of thin-coated amorphous dosage forms suitable for different drugs and coating agents. It demonstrated the importance of multiple factors that need to be taken into consideration when aiming to achieve both physical stability and improved release during the shelf life of amorphous formulations. American Chemical Society 2020-02-06 2020-04-06 /pmc/articles/PMC7145361/ /pubmed/32027513 http://dx.doi.org/10.1021/acs.molpharmaceut.9b01263 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Novakovic, Dunja Peltonen, Leena Isomäki, Antti Fraser-Miller, Sara J. Nielsen, Line Hagner Laaksonen, Timo Strachan, Clare J. Surface Stabilization and Dissolution Rate Improvement of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All? |
title | Surface Stabilization and Dissolution Rate Improvement
of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All? |
title_full | Surface Stabilization and Dissolution Rate Improvement
of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All? |
title_fullStr | Surface Stabilization and Dissolution Rate Improvement
of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All? |
title_full_unstemmed | Surface Stabilization and Dissolution Rate Improvement
of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All? |
title_short | Surface Stabilization and Dissolution Rate Improvement
of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All? |
title_sort | surface stabilization and dissolution rate improvement
of amorphous compacts with thin polymer coatings: can we have it all? |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145361/ https://www.ncbi.nlm.nih.gov/pubmed/32027513 http://dx.doi.org/10.1021/acs.molpharmaceut.9b01263 |
work_keys_str_mv | AT novakovicdunja surfacestabilizationanddissolutionrateimprovementofamorphouscompactswiththinpolymercoatingscanwehaveitall AT peltonenleena surfacestabilizationanddissolutionrateimprovementofamorphouscompactswiththinpolymercoatingscanwehaveitall AT isomakiantti surfacestabilizationanddissolutionrateimprovementofamorphouscompactswiththinpolymercoatingscanwehaveitall AT frasermillersaraj surfacestabilizationanddissolutionrateimprovementofamorphouscompactswiththinpolymercoatingscanwehaveitall AT nielsenlinehagner surfacestabilizationanddissolutionrateimprovementofamorphouscompactswiththinpolymercoatingscanwehaveitall AT laaksonentimo surfacestabilizationanddissolutionrateimprovementofamorphouscompactswiththinpolymercoatingscanwehaveitall AT strachanclarej surfacestabilizationanddissolutionrateimprovementofamorphouscompactswiththinpolymercoatingscanwehaveitall |