Cargando…
RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments
This paper presents an evaluation of real-time kinematic (RTK)/Pseudolite/landmarks assistance heuristic drift elimination (LAHDE)/inertial measurement unit-based personal dead reckoning systems (IMU-PDR) integrated pedestrian navigation system for urban and indoor environments. Real-time kinematic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147164/ https://www.ncbi.nlm.nih.gov/pubmed/32213874 http://dx.doi.org/10.3390/s20061791 |
_version_ | 1783520365395312640 |
---|---|
author | Zhu, Ruihui Wang, Yunjia Cao, Hongji Yu, Baoguo Gan, Xingli Huang, Lu Zhang, Heng Li, Shuang Jia, Haonan Chen, Jianqiang |
author_facet | Zhu, Ruihui Wang, Yunjia Cao, Hongji Yu, Baoguo Gan, Xingli Huang, Lu Zhang, Heng Li, Shuang Jia, Haonan Chen, Jianqiang |
author_sort | Zhu, Ruihui |
collection | PubMed |
description | This paper presents an evaluation of real-time kinematic (RTK)/Pseudolite/landmarks assistance heuristic drift elimination (LAHDE)/inertial measurement unit-based personal dead reckoning systems (IMU-PDR) integrated pedestrian navigation system for urban and indoor environments. Real-time kinematic (RTK) technique is widely used for high-precision positioning and can provide periodic correction to inertial measurement unit (IMU)-based personal dead reckoning systems (PDR) outdoors. However, indoors, where global positioning system (GPS) signals are not available, RTK fails to achieve high-precision positioning. Pseudolite can provide satellite-like navigation signals for user receivers to achieve positioning in indoor environments. However, there are some problems in pseudolite positioning field, such as complex multipath effect in indoor environments and integer ambiguity of carrier phase. In order to avoid the limitation of these factors, a local search method based on carrier phase difference with the assistance of IMU-PDR is proposed in this paper, which can achieve higher positioning accuracy. Besides, heuristic drift elimination algorithm with the assistance of manmade landmarks (LAHDE) is introduced to eliminate the accumulated error in headings derived by IMU-PDR in indoor corridors. An algorithm verification system was developed to carry out real experiments in a cooperation scene. Results show that, although the proposed pedestrian navigation system has to use human behavior to switch the positioning algorithm according to different scenarios, it is still effective in controlling the IMU-PDR drift error in multiscenarios including outdoor, indoor corridor, and indoor room for different people. |
format | Online Article Text |
id | pubmed-7147164 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71471642020-04-20 RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments Zhu, Ruihui Wang, Yunjia Cao, Hongji Yu, Baoguo Gan, Xingli Huang, Lu Zhang, Heng Li, Shuang Jia, Haonan Chen, Jianqiang Sensors (Basel) Article This paper presents an evaluation of real-time kinematic (RTK)/Pseudolite/landmarks assistance heuristic drift elimination (LAHDE)/inertial measurement unit-based personal dead reckoning systems (IMU-PDR) integrated pedestrian navigation system for urban and indoor environments. Real-time kinematic (RTK) technique is widely used for high-precision positioning and can provide periodic correction to inertial measurement unit (IMU)-based personal dead reckoning systems (PDR) outdoors. However, indoors, where global positioning system (GPS) signals are not available, RTK fails to achieve high-precision positioning. Pseudolite can provide satellite-like navigation signals for user receivers to achieve positioning in indoor environments. However, there are some problems in pseudolite positioning field, such as complex multipath effect in indoor environments and integer ambiguity of carrier phase. In order to avoid the limitation of these factors, a local search method based on carrier phase difference with the assistance of IMU-PDR is proposed in this paper, which can achieve higher positioning accuracy. Besides, heuristic drift elimination algorithm with the assistance of manmade landmarks (LAHDE) is introduced to eliminate the accumulated error in headings derived by IMU-PDR in indoor corridors. An algorithm verification system was developed to carry out real experiments in a cooperation scene. Results show that, although the proposed pedestrian navigation system has to use human behavior to switch the positioning algorithm according to different scenarios, it is still effective in controlling the IMU-PDR drift error in multiscenarios including outdoor, indoor corridor, and indoor room for different people. MDPI 2020-03-24 /pmc/articles/PMC7147164/ /pubmed/32213874 http://dx.doi.org/10.3390/s20061791 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhu, Ruihui Wang, Yunjia Cao, Hongji Yu, Baoguo Gan, Xingli Huang, Lu Zhang, Heng Li, Shuang Jia, Haonan Chen, Jianqiang RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments |
title | RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments |
title_full | RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments |
title_fullStr | RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments |
title_full_unstemmed | RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments |
title_short | RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments |
title_sort | rtk/pseudolite/lahde/imu-pdr integrated pedestrian navigation system for urban and indoor environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147164/ https://www.ncbi.nlm.nih.gov/pubmed/32213874 http://dx.doi.org/10.3390/s20061791 |
work_keys_str_mv | AT zhuruihui rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT wangyunjia rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT caohongji rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT yubaoguo rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT ganxingli rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT huanglu rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT zhangheng rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT lishuang rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT jiahaonan rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments AT chenjianqiang rtkpseudolitelahdeimupdrintegratedpedestriannavigationsystemforurbanandindoorenvironments |