Cargando…
Curriculum Learning Strategies for IR: An Empirical Study on Conversation Response Ranking
Neural ranking models are traditionally trained on a series of random batches, sampled uniformly from the entire training set. Curriculum learning has recently been shown to improve neural models’ effectiveness by sampling batches non-uniformly, going from easy to difficult instances during training...
Autores principales: | Penha, Gustavo, Hauff, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148246/ http://dx.doi.org/10.1007/978-3-030-45439-5_46 |
Ejemplares similares
-
Empirical and philosophical problems with the subspecies rank
por: Burbrink, Frank T., et al.
Publicado: (2022) -
Agreement between ranking metrics in network meta-analysis: an empirical study
por: Chiocchia, Virginia, et al.
Publicado: (2020) -
A Sentiwordnet Strategy for Curriculum Learning in Sentiment Analysis
por: Rao, Vijjini Anvesh, et al.
Publicado: (2020) -
PASSerRank: Prediction of Allosteric Sites with Learning to Rank
por: Tian, Hao, et al.
Publicado: (2023) -
IR ranking proposal and new beam parameter sets for the LHC upgrade: the view of HHH
por: Scandale, Walter, et al.
Publicado: (2007)