Cargando…

Manipulation of β‐carotene levels in tomato fruits results in increased ABA content and extended shelf life

Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit‐specific overexpression of LYCOPENE β‐CYCLASE (LCYb) resulted in inc...

Descripción completa

Detalles Bibliográficos
Autores principales: Diretto, Gianfranco, Frusciante, Sarah, Fabbri, Claudia, Schauer, Nicolas, Busta, Lucas, Wang, Zhonghua, Matas, Antonio J., Fiore, Alessia, K.C. Rose, Jocelyn, Fernie, Alisdair R., Jetter, Reinhard, Mattei, Benedetta, Giovannoni, Jim, Giuliano, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152610/
https://www.ncbi.nlm.nih.gov/pubmed/31646753
http://dx.doi.org/10.1111/pbi.13283
Descripción
Sumario:Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit‐specific overexpression of LYCOPENE β‐CYCLASE (LCYb) resulted in increased β‐carotene (provitamin A) content. Unexpectedly, LCYb‐overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase in abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased β‐carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of β‐carotene levels results in an improvement not only of the nutritional value of tomato fruits, but also of their shelf life.