Cargando…
Tandem Acid/Pd‐Catalyzed Reductive Rearrangement of Glycol Derivatives
Herein, we describe the acid/Pd‐tandem‐catalyzed transformation of glycol derivatives into terminal formic esters. Mechanistic investigations show that the substrate undergoes rearrangement to an aldehyde under [1,2] hydrogen migration and cleavage of an oxygen‐based leaving group. The leaving group...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154628/ https://www.ncbi.nlm.nih.gov/pubmed/31951298 http://dx.doi.org/10.1002/chem.202000251 |
Sumario: | Herein, we describe the acid/Pd‐tandem‐catalyzed transformation of glycol derivatives into terminal formic esters. Mechanistic investigations show that the substrate undergoes rearrangement to an aldehyde under [1,2] hydrogen migration and cleavage of an oxygen‐based leaving group. The leaving group is trapped as its formic ester, and the aldehyde is reduced and subsequently esterified to a formate. Whereas the rearrangement to the aldehyde is catalyzed by sulfonic acids, the reduction step requires a unique catalyst system comprising a Pd(II) or Pd(0) precursor in loadings as low as 0.75 mol % and α,α′‐bis(di‐tert‐butylphosphino)‐o‐xylene as ligand. The reduction step makes use of formic acid as an easy‐to‐handle transfer reductant. The substrate scope of the transformation encompasses both aromatic and aliphatic substrates and a variety of leaving groups. |
---|