Cargando…

Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses

The ability to understand and predict ambident reactivity is key to the rational design of organic syntheses. An approach to understand trends in ambident reactivity is the hard and soft acids and bases (HSAB) principle. The recent controversy over the general validity of this principle prompted us...

Descripción completa

Detalles Bibliográficos
Autores principales: Bettens, Tom, Alonso, Mercedes, De Proft, Frank, Hamlin, Trevor A., Bickelhaupt, F. Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154642/
https://www.ncbi.nlm.nih.gov/pubmed/31957943
http://dx.doi.org/10.1002/chem.202000272
_version_ 1783521861660835840
author Bettens, Tom
Alonso, Mercedes
De Proft, Frank
Hamlin, Trevor A.
Bickelhaupt, F. Matthias
author_facet Bettens, Tom
Alonso, Mercedes
De Proft, Frank
Hamlin, Trevor A.
Bickelhaupt, F. Matthias
author_sort Bettens, Tom
collection PubMed
description The ability to understand and predict ambident reactivity is key to the rational design of organic syntheses. An approach to understand trends in ambident reactivity is the hard and soft acids and bases (HSAB) principle. The recent controversy over the general validity of this principle prompted us to investigate the competing gas‐phase S(N)2 reaction channels of archetypal ambident nucleophiles CN(−), OCN(−), and SCN(−) with CH(3)Cl (S(N)2@C) and SiH(3)Cl (S(N)2@Si), using DFT calculations. Our combined analyses highlight the inability of the HSAB principle to correctly predict the reactivity trends of these simple, model reactions. Instead, we have successfully traced reactivity trends to the canonical orbital‐interaction mechanism and the resulting nucleophile–substrate interaction energy. The HOMO–LUMO orbital interactions set the trend in both S(N)2@C and S(N)2@Si reactions. We provide simple rules for predicting the ambident reactivity of nucleophiles based on our Kohn–Sham molecular orbital analysis.
format Online
Article
Text
id pubmed-7154642
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-71546422020-04-14 Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses Bettens, Tom Alonso, Mercedes De Proft, Frank Hamlin, Trevor A. Bickelhaupt, F. Matthias Chemistry Full Papers The ability to understand and predict ambident reactivity is key to the rational design of organic syntheses. An approach to understand trends in ambident reactivity is the hard and soft acids and bases (HSAB) principle. The recent controversy over the general validity of this principle prompted us to investigate the competing gas‐phase S(N)2 reaction channels of archetypal ambident nucleophiles CN(−), OCN(−), and SCN(−) with CH(3)Cl (S(N)2@C) and SiH(3)Cl (S(N)2@Si), using DFT calculations. Our combined analyses highlight the inability of the HSAB principle to correctly predict the reactivity trends of these simple, model reactions. Instead, we have successfully traced reactivity trends to the canonical orbital‐interaction mechanism and the resulting nucleophile–substrate interaction energy. The HOMO–LUMO orbital interactions set the trend in both S(N)2@C and S(N)2@Si reactions. We provide simple rules for predicting the ambident reactivity of nucleophiles based on our Kohn–Sham molecular orbital analysis. John Wiley and Sons Inc. 2020-03-03 2020-03-23 /pmc/articles/PMC7154642/ /pubmed/31957943 http://dx.doi.org/10.1002/chem.202000272 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Full Papers
Bettens, Tom
Alonso, Mercedes
De Proft, Frank
Hamlin, Trevor A.
Bickelhaupt, F. Matthias
Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses
title Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses
title_full Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses
title_fullStr Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses
title_full_unstemmed Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses
title_short Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses
title_sort ambident nucleophilic substitution: understanding non‐hsab behavior through activation strain and conceptual dft analyses
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154642/
https://www.ncbi.nlm.nih.gov/pubmed/31957943
http://dx.doi.org/10.1002/chem.202000272
work_keys_str_mv AT bettenstom ambidentnucleophilicsubstitutionunderstandingnonhsabbehaviorthroughactivationstrainandconceptualdftanalyses
AT alonsomercedes ambidentnucleophilicsubstitutionunderstandingnonhsabbehaviorthroughactivationstrainandconceptualdftanalyses
AT deproftfrank ambidentnucleophilicsubstitutionunderstandingnonhsabbehaviorthroughactivationstrainandconceptualdftanalyses
AT hamlintrevora ambidentnucleophilicsubstitutionunderstandingnonhsabbehaviorthroughactivationstrainandconceptualdftanalyses
AT bickelhauptfmatthias ambidentnucleophilicsubstitutionunderstandingnonhsabbehaviorthroughactivationstrainandconceptualdftanalyses