Cargando…
Improving production of Streptomyces griseus trypsin for enzymatic processing of insulin precursor
BACKGROUND: Trypsin has many applications in food and pharmaceutical manufacturing. Although commercial trypsin is usually extracted from porcine pancreas, this source carries the risks of infectivity and immunogenicity. Microbial Streptomyces griseus trypsin (SGT) is a prime alternative because it...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155311/ https://www.ncbi.nlm.nih.gov/pubmed/32284060 http://dx.doi.org/10.1186/s12934-020-01338-9 |
Sumario: | BACKGROUND: Trypsin has many applications in food and pharmaceutical manufacturing. Although commercial trypsin is usually extracted from porcine pancreas, this source carries the risks of infectivity and immunogenicity. Microbial Streptomyces griseus trypsin (SGT) is a prime alternative because it possesses efficient hydrolysis activity without such risks. However, the remarkable hydrolysis efficiency of SGT causes autolysis, and five autolysis sites, R21, R32, K122, R153, and R201, were identified from its autolysate. RESULTS: The tbcf (K101A, R201V) mutant was screened by a directed selection approach for improved activity in flask culture (60.85 ± 3.42 U mL(−1), increased 1.5-fold). From the molecular dynamics simulation, in the K101A/R201V mutant the distance between the catalytical residues D102 and H57 was shortened to 6.5 Å vs 7.0 Å in the wild type, which afforded the improved specific activity of 1527.96 ± 62.81 U mg(−1). Furthermore, the production of trypsin was increased by 302.8% (689.47 ± 6.78 U mL(−1)) in a 3-L bioreactor, with co-overexpression of chaperones SSO2 and UBC1 in Pichia pastoris. CONCLUSIONS: SGT protein could be a good source of trypsin for insulin production. As a result of the hydrolysates analysis and direct selection, the activity of the tbcf (K101A, R201V) mutant increased 1.5-fold. Furthermore, the production of trypsin was improved threefold by overexpressing chaperone protein in Pichia pastoris. Future studies should investigate the application of SGT to insulin and pharmaceutical manufacturing. |
---|