Cargando…
Mechanoreception for Soft Robots via Intuitive Body Cues
Mechanoreception, the ability of robots to detect mechanical stimuli from the internal and external environments, contributes significantly to improving safety and task performance during the operation of robots in unstructured environments. Various approaches have been proposed to endow robot syste...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155928/ https://www.ncbi.nlm.nih.gov/pubmed/31687888 http://dx.doi.org/10.1089/soro.2018.0135 |
_version_ | 1783522130441273344 |
---|---|
author | Wang, Liangliang Wang, Zheng |
author_facet | Wang, Liangliang Wang, Zheng |
author_sort | Wang, Liangliang |
collection | PubMed |
description | Mechanoreception, the ability of robots to detect mechanical stimuli from the internal and external environments, contributes significantly to improving safety and task performance during the operation of robots in unstructured environments. Various approaches have been proposed to endow robot systems with mechanoreception. In the case of soft robots, the state-of-the-art mechanosensory solutions typically embedded dedicated deformable sensors into the soft body, giving rise to fabrication complexity and signal sophistication. In this study, we propose a novel mechanoreception scheme to enable pneumatic-driven soft robots to perceive proprioceptive movements as well as external contacts. Both internal and external mechanical parameters can be decoded from intuitive cues of body deformation and pneumatic pressure signals. In contrast to most existing solutions employing dedicated deformable sensors, the proposed approach only utilizes pressure feedback, which is typically available from the pneumatic pressure sensors incorporated in the control loop of most pneumatic soft robots. The concept was implemented and validated on a proprietary robotic gripper with a linear soft pneumatic actuator, demonstrating the capability in simultaneous detection of actuator position and external contact forceAfter the proposed approach, the gripper can achieve both active and passive mechanosensation, with demonstrated experiments in grasping force estimation, contact loss detection, object stiffness identification, and contour measurements. This approach offers an alternative route to achieving excellent internal/environmental awareness without requiring dedicated sensing modalities. |
format | Online Article Text |
id | pubmed-7155928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Mary Ann Liebert, Inc., publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-71559282020-04-14 Mechanoreception for Soft Robots via Intuitive Body Cues Wang, Liangliang Wang, Zheng Soft Robot Original Article Mechanoreception, the ability of robots to detect mechanical stimuli from the internal and external environments, contributes significantly to improving safety and task performance during the operation of robots in unstructured environments. Various approaches have been proposed to endow robot systems with mechanoreception. In the case of soft robots, the state-of-the-art mechanosensory solutions typically embedded dedicated deformable sensors into the soft body, giving rise to fabrication complexity and signal sophistication. In this study, we propose a novel mechanoreception scheme to enable pneumatic-driven soft robots to perceive proprioceptive movements as well as external contacts. Both internal and external mechanical parameters can be decoded from intuitive cues of body deformation and pneumatic pressure signals. In contrast to most existing solutions employing dedicated deformable sensors, the proposed approach only utilizes pressure feedback, which is typically available from the pneumatic pressure sensors incorporated in the control loop of most pneumatic soft robots. The concept was implemented and validated on a proprietary robotic gripper with a linear soft pneumatic actuator, demonstrating the capability in simultaneous detection of actuator position and external contact forceAfter the proposed approach, the gripper can achieve both active and passive mechanosensation, with demonstrated experiments in grasping force estimation, contact loss detection, object stiffness identification, and contour measurements. This approach offers an alternative route to achieving excellent internal/environmental awareness without requiring dedicated sensing modalities. Mary Ann Liebert, Inc., publishers 2020-04-01 2020-04-03 /pmc/articles/PMC7155928/ /pubmed/31687888 http://dx.doi.org/10.1089/soro.2018.0135 Text en © Liangliang Wang and Zheng Wang 2019; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Wang, Liangliang Wang, Zheng Mechanoreception for Soft Robots via Intuitive Body Cues |
title | Mechanoreception for Soft Robots via Intuitive Body Cues |
title_full | Mechanoreception for Soft Robots via Intuitive Body Cues |
title_fullStr | Mechanoreception for Soft Robots via Intuitive Body Cues |
title_full_unstemmed | Mechanoreception for Soft Robots via Intuitive Body Cues |
title_short | Mechanoreception for Soft Robots via Intuitive Body Cues |
title_sort | mechanoreception for soft robots via intuitive body cues |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155928/ https://www.ncbi.nlm.nih.gov/pubmed/31687888 http://dx.doi.org/10.1089/soro.2018.0135 |
work_keys_str_mv | AT wangliangliang mechanoreceptionforsoftrobotsviaintuitivebodycues AT wangzheng mechanoreceptionforsoftrobotsviaintuitivebodycues |