Cargando…

Fluorescence anisotropy assays for high throughput screening of compounds binding to lipid II, PBP1b, FtsW and MurJ

Lipid II precursor and its processing by a flippase and peptidoglycan polymerases are considered key hot spot targets for antibiotics. We have developed a fluorescent anisotropy (FA) assay using a unique and versatile probe (fluorescent lipid II) and monitored direct binding between lipid II and int...

Descripción completa

Detalles Bibliográficos
Autores principales: Boes, Adrien, Olatunji, Samir, Mohammadi, Tamimount, Breukink, Eefjan, Terrak, Mohammed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156629/
https://www.ncbi.nlm.nih.gov/pubmed/32286439
http://dx.doi.org/10.1038/s41598-020-63380-2
Descripción
Sumario:Lipid II precursor and its processing by a flippase and peptidoglycan polymerases are considered key hot spot targets for antibiotics. We have developed a fluorescent anisotropy (FA) assay using a unique and versatile probe (fluorescent lipid II) and monitored direct binding between lipid II and interacting proteins (PBP1b, FtsW and MurJ), as well as between lipid II and interacting antibiotics (vancomycin, nisin, ramoplanin and a small molecule). Competition experiments performed using unlabelled lipid II, four lipid II-binding antibiotics and moenomycin demonstrate that the assay can detect compounds interacting with lipid II or the proteins. These results provide a proof-of-concept for the use of this assay in a high-throughput screening of compounds against all these targets. In addition, the assay constitutes a powerful tool in the study of the mode of action of compounds that interfere with these processes. Interestingly, FA assay with lipid II probe has the advantage over moenomycin based probe to potentially identify compounds that interfere with both donor and acceptor sites of the aPBPs GTase as well as compounds that bind to lipid II. In addition, this assay would allow the screening of compounds against SEDS proteins and MurJ which do not interact with moenomycin.