Cargando…

Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring

BACKGROUND: Maternal obesity as a result of high levels of saturated fat (HFD) consumption leads to significant negative health outcomes in both mother and exposed offspring. Offspring exposed to maternal HFD show sex-specific alterations in metabolic, behavioral, and endocrine function, as well as...

Descripción completa

Detalles Bibliográficos
Autores principales: Wijenayake, Sanoji, Rahman, Mouly F., Lum, Christine M. W., De Vega, Wilfred C., Sasaki, Aya, McGowan, Patrick O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158103/
https://www.ncbi.nlm.nih.gov/pubmed/32293490
http://dx.doi.org/10.1186/s12974-020-01798-1
_version_ 1783522471473840128
author Wijenayake, Sanoji
Rahman, Mouly F.
Lum, Christine M. W.
De Vega, Wilfred C.
Sasaki, Aya
McGowan, Patrick O.
author_facet Wijenayake, Sanoji
Rahman, Mouly F.
Lum, Christine M. W.
De Vega, Wilfred C.
Sasaki, Aya
McGowan, Patrick O.
author_sort Wijenayake, Sanoji
collection PubMed
description BACKGROUND: Maternal obesity as a result of high levels of saturated fat (HFD) consumption leads to significant negative health outcomes in both mother and exposed offspring. Offspring exposed to maternal HFD show sex-specific alterations in metabolic, behavioral, and endocrine function, as well as increased levels of basal neuroinflammation that persists into adulthood. There is evidence that psychosocial stress or exogenous administration of corticosterone (CORT) potentiate inflammatory gene expression; however, the response to acute CORT or immune challenge in adult offspring exposed to maternal HFD during perinatal life is unknown. We hypothesize that adult rat offspring exposed to maternal HFD would show enhanced pro-inflammatory gene expression in response to acute administration of CORT and lipopolysaccharide (LPS) compared to control animals, as a result of elevated basal pro-inflammatory gene expression. To test this, we examined the effects of acute CORT and/or LPS exposure on pro and anti-inflammatory neural gene expression in adult offspring (male and female) with perinatal exposure to a HFD or a control house-chow diet (CHD). METHODS: Rat dams consumed HFD or CHD for four weeks prior to mating, during gestation, and throughout lactation. All male and female offspring were weaned on to CHD. In adulthood, offspring were ‘challenged’ with administration of exogenous CORT and/or LPS, and quantitative PCR was used to measure transcript abundance of glucocorticoid receptors and downstream inflammatory markers in the amygdala, hippocampus, and prefrontal cortex. RESULTS: In response to CORT alone, male HFD offspring showed increased levels of anti-inflammatory transcripts, whereas in response to LPS alone, female HFD offspring showed increased levels of pro-inflammatory transcripts. In addition, male HFD offspring showed greater pro-inflammatory gene expression and female HFD offspring exhibited increased anti-inflammatory gene expression in response to simultaneous CORT and LPS administration. CONCLUSIONS: These findings suggest that exposure to maternal HFD leads to sex-specific changes that may alter inflammatory responses in the brain, possibly as an adaptive response to basal neuroinflammation.
format Online
Article
Text
id pubmed-7158103
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-71581032020-04-21 Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring Wijenayake, Sanoji Rahman, Mouly F. Lum, Christine M. W. De Vega, Wilfred C. Sasaki, Aya McGowan, Patrick O. J Neuroinflammation Research BACKGROUND: Maternal obesity as a result of high levels of saturated fat (HFD) consumption leads to significant negative health outcomes in both mother and exposed offspring. Offspring exposed to maternal HFD show sex-specific alterations in metabolic, behavioral, and endocrine function, as well as increased levels of basal neuroinflammation that persists into adulthood. There is evidence that psychosocial stress or exogenous administration of corticosterone (CORT) potentiate inflammatory gene expression; however, the response to acute CORT or immune challenge in adult offspring exposed to maternal HFD during perinatal life is unknown. We hypothesize that adult rat offspring exposed to maternal HFD would show enhanced pro-inflammatory gene expression in response to acute administration of CORT and lipopolysaccharide (LPS) compared to control animals, as a result of elevated basal pro-inflammatory gene expression. To test this, we examined the effects of acute CORT and/or LPS exposure on pro and anti-inflammatory neural gene expression in adult offspring (male and female) with perinatal exposure to a HFD or a control house-chow diet (CHD). METHODS: Rat dams consumed HFD or CHD for four weeks prior to mating, during gestation, and throughout lactation. All male and female offspring were weaned on to CHD. In adulthood, offspring were ‘challenged’ with administration of exogenous CORT and/or LPS, and quantitative PCR was used to measure transcript abundance of glucocorticoid receptors and downstream inflammatory markers in the amygdala, hippocampus, and prefrontal cortex. RESULTS: In response to CORT alone, male HFD offspring showed increased levels of anti-inflammatory transcripts, whereas in response to LPS alone, female HFD offspring showed increased levels of pro-inflammatory transcripts. In addition, male HFD offspring showed greater pro-inflammatory gene expression and female HFD offspring exhibited increased anti-inflammatory gene expression in response to simultaneous CORT and LPS administration. CONCLUSIONS: These findings suggest that exposure to maternal HFD leads to sex-specific changes that may alter inflammatory responses in the brain, possibly as an adaptive response to basal neuroinflammation. BioMed Central 2020-04-15 /pmc/articles/PMC7158103/ /pubmed/32293490 http://dx.doi.org/10.1186/s12974-020-01798-1 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Wijenayake, Sanoji
Rahman, Mouly F.
Lum, Christine M. W.
De Vega, Wilfred C.
Sasaki, Aya
McGowan, Patrick O.
Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring
title Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring
title_full Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring
title_fullStr Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring
title_full_unstemmed Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring
title_short Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring
title_sort maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158103/
https://www.ncbi.nlm.nih.gov/pubmed/32293490
http://dx.doi.org/10.1186/s12974-020-01798-1
work_keys_str_mv AT wijenayakesanoji maternalhighfatdietinducessexspecificchangestoglucocorticoidandinflammatorysignalinginresponsetocorticosteroneandlipopolysaccharidechallengeinadultratoffspring
AT rahmanmoulyf maternalhighfatdietinducessexspecificchangestoglucocorticoidandinflammatorysignalinginresponsetocorticosteroneandlipopolysaccharidechallengeinadultratoffspring
AT lumchristinemw maternalhighfatdietinducessexspecificchangestoglucocorticoidandinflammatorysignalinginresponsetocorticosteroneandlipopolysaccharidechallengeinadultratoffspring
AT devegawilfredc maternalhighfatdietinducessexspecificchangestoglucocorticoidandinflammatorysignalinginresponsetocorticosteroneandlipopolysaccharidechallengeinadultratoffspring
AT sasakiaya maternalhighfatdietinducessexspecificchangestoglucocorticoidandinflammatorysignalinginresponsetocorticosteroneandlipopolysaccharidechallengeinadultratoffspring
AT mcgowanpatricko maternalhighfatdietinducessexspecificchangestoglucocorticoidandinflammatorysignalinginresponsetocorticosteroneandlipopolysaccharidechallengeinadultratoffspring