Cargando…

BMP2K dysregulation promotes abnormal megakaryopoiesis in acute megakaryoblastic leukemia

BACKGROUND: Forced polyploidization is an effective strategy for acute megakaryoblastic leukemia (AMKL) therapy and factors controlling polyploidization are potential targets for drug development. Although bone morphology protein 2-inducible kinase (BMP2K) has been implied to be a potential target f...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Manman, Zhang, Tan, Zhang, Xuechun, Jiang, Zhou, Peng, Min, Huang, Zan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161226/
https://www.ncbi.nlm.nih.gov/pubmed/32322386
http://dx.doi.org/10.1186/s13578-020-00418-y
Descripción
Sumario:BACKGROUND: Forced polyploidization is an effective strategy for acute megakaryoblastic leukemia (AMKL) therapy and factors controlling polyploidization are potential targets for drug development. Although bone morphology protein 2-inducible kinase (BMP2K) has been implied to be a potential target for fasudil, a potent polyploidy-inducing compound, the function of BMP2K in megakaryopoiesis and AMKL remains unknown. This study aimed to investigate the role of BMP2K as a novel regulator in megakaryocyte polyploidization and differentiation and its implication in AMKL therapy. RESULTS: BMP2K upregulation was observed in human megakaryopoiesis and leukemia cells whereas BMP2K was downregulated in AMKL cells forced to undergo terminal differentiation. Functionally, BMP2K suppressed MLN8237-induced megakaryocytic differentiation in AMKL cells and dampened megakaryocyte differentiation in primary mouse fetal liver cells. Furthermore, BMP2K overexpression conferred resistance to multiple chemotherapy compounds in AMKL cells. Mechanistically, cyclin-dependent kinase 2 (CDK2) interacted with BMP2K and partially mediated its function. In transient MLN8237 and nocodazole challenge cell model, BMP2K reduced cell percentage of G2/M phase but increased G1 phase, suggesting a role of BMP2K antagonizing polyploidization and promoting mitosis by regulating cell cycle in megakaryopoiesis. CONCLUSIONS: BMP2K negatively regulates polyploidization and megakaryocyte differentiation by interacting CDK2 and promoting mitosis in megakaryopoiesis. BMP2K may serve as a potential target for improvement of AMKL therapy.