Cargando…

Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation

The formation of silenced and condensed heterochromatin foci involves enrichment of heterochromatin protein 1 (HP1). HP1 can bridge chromatin segments and form liquid droplets, but the biophysical principles underlying heterochromatin compartmentalization in the cell nucleus are elusive. Here, we as...

Descripción completa

Detalles Bibliográficos
Autores principales: Erdel, Fabian, Rademacher, Anne, Vlijm, Rifka, Tünnermann, Jana, Frank, Lukas, Weinmann, Robin, Schweigert, Elisabeth, Yserentant, Klaus, Hummert, Johan, Bauer, Caroline, Schumacher, Sabrina, Al Alwash, Ahmad, Normand, Christophe, Herten, Dirk-Peter, Engelhardt, Johann, Rippe, Karsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163299/
https://www.ncbi.nlm.nih.gov/pubmed/32101700
http://dx.doi.org/10.1016/j.molcel.2020.02.005
Descripción
Sumario:The formation of silenced and condensed heterochromatin foci involves enrichment of heterochromatin protein 1 (HP1). HP1 can bridge chromatin segments and form liquid droplets, but the biophysical principles underlying heterochromatin compartmentalization in the cell nucleus are elusive. Here, we assess mechanistically relevant features of pericentric heterochromatin compaction in mouse fibroblasts. We find that (1) HP1 has only a weak capacity to form liquid droplets in living cells; (2) the size, global accessibility, and compaction of heterochromatin foci are independent of HP1; (3) heterochromatin foci lack a separated liquid HP1 pool; and (4) heterochromatin compaction can toggle between two “digital” states depending on the presence of a strong transcriptional activator. These findings indicate that heterochromatin foci resemble collapsed polymer globules that are percolated with the same nucleoplasmic liquid as the surrounding euchromatin, which has implications for our understanding of chromatin compartmentalization and its functional consequences.