Cargando…
An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice
Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Herein, we show that the ribonucleoside analog β-D-N(4)-hydroxycytidine (NHC, EIDD-1931) has broad spectrum antivi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164393/ https://www.ncbi.nlm.nih.gov/pubmed/32253226 http://dx.doi.org/10.1126/scitranslmed.abb5883 |
Sumario: | Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Herein, we show that the ribonucleoside analog β-D-N(4)-hydroxycytidine (NHC, EIDD-1931) has broad spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c Bat-CoVs, as well as increased potency against a coronavirus bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC-prodrug (β-D-N(4)-hydroxycytidine-5′-isopropyl ester), improved pulmonary function, and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple coronaviruses and oral bioavailability highlight its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic coronaviruses. |
---|