Cargando…
Large scale active-learning-guided exploration for in vitro protein production optimization
Lysate-based cell-free systems have become a major platform to study gene expression but batch-to-batch variation makes protein production difficult to predict. Here we describe an active learning approach to explore a combinatorial space of ~4,000,000 cell-free buffer compositions, maximizing prote...
Autores principales: | Borkowski, Olivier, Koch, Mathilde, Zettor, Agnès, Pandi, Amir, Batista, Angelo Cardoso, Soudier, Paul, Faulon, Jean-Loup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170859/ https://www.ncbi.nlm.nih.gov/pubmed/32312991 http://dx.doi.org/10.1038/s41467-020-15798-5 |
Ejemplares similares
-
Metabolic perceptrons for neural computing in biological systems
por: Pandi, Amir, et al.
Publicado: (2019) -
Models for Cell-Free Synthetic Biology: Make Prototyping Easier, Better, and Faster
por: Koch, Mathilde, et al.
Publicado: (2018) -
Optimising protein synthesis in cell‐free systems, a review
por: Batista, Angelo C., et al.
Publicado: (2021) -
A dataset of small molecules triggering transcriptional and translational cellular responses
por: Koch, Mathilde, et al.
Publicado: (2018) -
Building a minimal and generalizable model of transcription factor–based biosensors: Showcasing flavonoids
por: Trabelsi, Heykel, et al.
Publicado: (2018)