Cargando…
Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength
The microgravity conditions of prolonged spaceflight are known to result in skeletal muscle atrophy that leads to diminished functional performance. To assess if inhibition of the growth factor myostatin has potential to reverse these effects, mice were treated with a myostatin antibody while housed...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173869/ https://www.ncbi.nlm.nih.gov/pubmed/32315311 http://dx.doi.org/10.1371/journal.pone.0230818 |
_version_ | 1783524531331137536 |
---|---|
author | Smith, Rosamund C. Cramer, Martin S. Mitchell, Pamela J. Lucchesi, Jonathan Ortega, Alicia M. Livingston, Eric W. Ballard, Darryl Zhang, Ling Hanson, Jeff Barton, Kenneth Berens, Shawn Credille, Kelly M. Bateman, Ted A. Ferguson, Virginia L. Ma, Yanfei L. Stodieck, Louis S. |
author_facet | Smith, Rosamund C. Cramer, Martin S. Mitchell, Pamela J. Lucchesi, Jonathan Ortega, Alicia M. Livingston, Eric W. Ballard, Darryl Zhang, Ling Hanson, Jeff Barton, Kenneth Berens, Shawn Credille, Kelly M. Bateman, Ted A. Ferguson, Virginia L. Ma, Yanfei L. Stodieck, Louis S. |
author_sort | Smith, Rosamund C. |
collection | PubMed |
description | The microgravity conditions of prolonged spaceflight are known to result in skeletal muscle atrophy that leads to diminished functional performance. To assess if inhibition of the growth factor myostatin has potential to reverse these effects, mice were treated with a myostatin antibody while housed on the International Space Station. Grip strength of ground control mice increased 3.1% compared to baseline values over the 6 weeks of the study, whereas grip strength measured for the first time in space showed flight animals to be -7.8% decreased in strength compared to baseline values. Control mice in space exhibited, compared to ground-based controls, a smaller increase in DEXA-measured muscle mass (+3.9% vs +5.6% respectively) although the difference was not significant. All individual flight limb muscles analyzed (except for the EDL) weighed significantly less than their ground counterparts at the study end (range -4.4% to -28.4%). Treatment with myostatin antibody YN41 was able to prevent many of these space-induced muscle changes. YN41 was able to block the reduction in muscle grip strength caused by spaceflight and was able to significantly increase the weight of all muscles of flight mice (apart from the EDL). Muscles of YN41-treated flight mice weighed as much as muscles from Ground IgG mice, with the exception of the soleus, demonstrating the ability to prevent spaceflight-induced atrophy. Muscle gene expression analysis demonstrated significant effects of microgravity and myostatin inhibition on many genes. Gamt and Actc1 gene expression was modulated by microgravity and YN41 in opposing directions. Myostatin inhibition did not overcome the significant reduction of microgravity on femoral BMD nor did it increase femoral or vertebral BMD in ground control mice. In summary, myostatin inhibition may be an effective countermeasure to detrimental consequences of skeletal muscle under microgravity conditions. |
format | Online Article Text |
id | pubmed-7173869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71738692020-04-27 Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength Smith, Rosamund C. Cramer, Martin S. Mitchell, Pamela J. Lucchesi, Jonathan Ortega, Alicia M. Livingston, Eric W. Ballard, Darryl Zhang, Ling Hanson, Jeff Barton, Kenneth Berens, Shawn Credille, Kelly M. Bateman, Ted A. Ferguson, Virginia L. Ma, Yanfei L. Stodieck, Louis S. PLoS One Research Article The microgravity conditions of prolonged spaceflight are known to result in skeletal muscle atrophy that leads to diminished functional performance. To assess if inhibition of the growth factor myostatin has potential to reverse these effects, mice were treated with a myostatin antibody while housed on the International Space Station. Grip strength of ground control mice increased 3.1% compared to baseline values over the 6 weeks of the study, whereas grip strength measured for the first time in space showed flight animals to be -7.8% decreased in strength compared to baseline values. Control mice in space exhibited, compared to ground-based controls, a smaller increase in DEXA-measured muscle mass (+3.9% vs +5.6% respectively) although the difference was not significant. All individual flight limb muscles analyzed (except for the EDL) weighed significantly less than their ground counterparts at the study end (range -4.4% to -28.4%). Treatment with myostatin antibody YN41 was able to prevent many of these space-induced muscle changes. YN41 was able to block the reduction in muscle grip strength caused by spaceflight and was able to significantly increase the weight of all muscles of flight mice (apart from the EDL). Muscles of YN41-treated flight mice weighed as much as muscles from Ground IgG mice, with the exception of the soleus, demonstrating the ability to prevent spaceflight-induced atrophy. Muscle gene expression analysis demonstrated significant effects of microgravity and myostatin inhibition on many genes. Gamt and Actc1 gene expression was modulated by microgravity and YN41 in opposing directions. Myostatin inhibition did not overcome the significant reduction of microgravity on femoral BMD nor did it increase femoral or vertebral BMD in ground control mice. In summary, myostatin inhibition may be an effective countermeasure to detrimental consequences of skeletal muscle under microgravity conditions. Public Library of Science 2020-04-21 /pmc/articles/PMC7173869/ /pubmed/32315311 http://dx.doi.org/10.1371/journal.pone.0230818 Text en © 2020 Smith et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Smith, Rosamund C. Cramer, Martin S. Mitchell, Pamela J. Lucchesi, Jonathan Ortega, Alicia M. Livingston, Eric W. Ballard, Darryl Zhang, Ling Hanson, Jeff Barton, Kenneth Berens, Shawn Credille, Kelly M. Bateman, Ted A. Ferguson, Virginia L. Ma, Yanfei L. Stodieck, Louis S. Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength |
title | Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength |
title_full | Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength |
title_fullStr | Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength |
title_full_unstemmed | Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength |
title_short | Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength |
title_sort | inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173869/ https://www.ncbi.nlm.nih.gov/pubmed/32315311 http://dx.doi.org/10.1371/journal.pone.0230818 |
work_keys_str_mv | AT smithrosamundc inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT cramermartins inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT mitchellpamelaj inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT lucchesijonathan inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT ortegaaliciam inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT livingstonericw inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT ballarddarryl inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT zhangling inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT hansonjeff inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT bartonkenneth inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT berensshawn inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT credillekellym inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT batemanteda inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT fergusonvirginial inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT mayanfeil inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength AT stodiecklouiss inhibitionofmyostatinpreventsmicrogravityinducedlossofskeletalmusclemassandstrength |