Cargando…
Rapid identification of chrysanthemum teas by computer vision and deep learning
Seven commercial Chinese chrysanthemum tea products were classified by computer vision combined with machine learning algorithms. Without the need of building any specific hardware, the image acquisition was achieved in two computer vision approaches. In the first approach, a series of multivariate...
Autores principales: | Liu, Chunlin, Lu, Weiying, Gao, Boyan, Kimura, Hanae, Li, Yanfang, Wang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174232/ https://www.ncbi.nlm.nih.gov/pubmed/32328263 http://dx.doi.org/10.1002/fsn3.1484 |
Ejemplares similares
-
Tea Chrysanthemum Detection by Leveraging Generative Adversarial Networks and Edge Computing
por: Qi, Chao, et al.
Publicado: (2022) -
Tea-YOLOv8s: A Tea Bud Detection Model Based on Deep Learning and Computer Vision
por: Xie, Shuang, et al.
Publicado: (2023) -
Deep Learning in Computer Vision
por: Kudrynski, Krzysztof, et al.
Publicado: (2019) -
Identification of Chrysanthemum (Chrysanthemum morifolium) Self-Incompatibility
por: Wang, Fan, et al.
Publicado: (2014) -
Image dataset of tea chrysanthemums in complex outdoor scenes
por: Zang, Siyang, et al.
Publicado: (2023)