Cargando…
Causal network perturbations for instance-specific analysis of single cell and disease samples
MOTIVATION: Complex diseases involve perturbation in multiple pathways and a major challenge in clinical genomics is characterizing pathway perturbations in individual samples. This can lead to patient-specific identification of the underlying mechanism of disease thereby improving diagnosis and per...
Autores principales: | Buschur, Kristina L, Chikina, Maria, Benos, Panayiotis V |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178399/ https://www.ncbi.nlm.nih.gov/pubmed/31873725 http://dx.doi.org/10.1093/bioinformatics/btz949 |
Ejemplares similares
-
An intrinsically interpretable neural network architecture for sequence to function learning
por: Balcı, Ali Tuğrul, et al.
Publicado: (2023) -
An intrinsically interpretable neural network architecture for sequence-to-function learning
por: Balcı, Ali Tuğrul, et al.
Publicado: (2023) -
CausalMGM: an interactive web-based causal discovery tool
por: Ge, Xiaoyu, et al.
Publicado: (2020) -
A theoretical analysis based on causal inference and single-instance learning
por: Wang, Chao, et al.
Publicado: (2022) -
Distinct COPD subtypes in former smokers revealed by gene network perturbation analysis
por: Buschur, Kristina L., et al.
Publicado: (2023)