Cargando…
Functional arrays of human pluripotent stem cell-derived cardiac microtissues
To accelerate the cardiac drug discovery pipeline, we set out to develop a platform that would be capable of quantifying tissue-level functions such as contractile force and be amenable to standard multiwell-plate manipulations. We report a 96-well-based array of 3D human pluripotent stem cell (hPSC...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181791/ https://www.ncbi.nlm.nih.gov/pubmed/32332814 http://dx.doi.org/10.1038/s41598-020-62955-3 |
_version_ | 1783526119305117696 |
---|---|
author | Thavandiran, Nimalan Hale, Christopher Blit, Patrick Sandberg, Mark L. McElvain, Michele E. Gagliardi, Mark Sun, Bo Witty, Alec Graham, George Do, Van T.H. Bakooshli, Mohsen Afshar Le, Hon Ostblom, Joel McEwen, Samuel Chau, Erik Prowse, Andrew Fernandes, Ian Norman, Andreea Gilbert, Penney M. Keller, Gordon Tagari, Philip Xu, Han Radisic, Milica Zandstra, Peter W. |
author_facet | Thavandiran, Nimalan Hale, Christopher Blit, Patrick Sandberg, Mark L. McElvain, Michele E. Gagliardi, Mark Sun, Bo Witty, Alec Graham, George Do, Van T.H. Bakooshli, Mohsen Afshar Le, Hon Ostblom, Joel McEwen, Samuel Chau, Erik Prowse, Andrew Fernandes, Ian Norman, Andreea Gilbert, Penney M. Keller, Gordon Tagari, Philip Xu, Han Radisic, Milica Zandstra, Peter W. |
author_sort | Thavandiran, Nimalan |
collection | PubMed |
description | To accelerate the cardiac drug discovery pipeline, we set out to develop a platform that would be capable of quantifying tissue-level functions such as contractile force and be amenable to standard multiwell-plate manipulations. We report a 96-well-based array of 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues - termed Cardiac MicroRings (CaMiRi) - in custom 3D-print-molded multiwell plates capable of contractile force measurement. Within each well, two elastomeric microcantilevers are situated above a circumferential ramp. The wells are seeded with cell-laden collagen, which, in response to the gradual slope of the circumferential ramp, self-organizes around tip-gated microcantilevers to form contracting CaMiRi. The contractile force exerted by the CaMiRi is measured and calculated using the deflection of the cantilevers. Platform responses were robust and comparable across wells, and we used it to determine an optimal tissue formulation. We validated the contractile force response of CaMiRi using selected cardiotropic compounds with known effects. Additionally, we developed automated protocols for CaMiRi seeding, image acquisition, and analysis to enable the measurement of contractile force with increased throughput. The unique tissue fabrication properties of the platform, and the consequent effects on tissue function, were demonstrated upon adding hPSC-derived epicardial cells to the system. This platform represents an open-source contractile force screening system useful for drug screening and tissue engineering applications. |
format | Online Article Text |
id | pubmed-7181791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-71817912020-04-29 Functional arrays of human pluripotent stem cell-derived cardiac microtissues Thavandiran, Nimalan Hale, Christopher Blit, Patrick Sandberg, Mark L. McElvain, Michele E. Gagliardi, Mark Sun, Bo Witty, Alec Graham, George Do, Van T.H. Bakooshli, Mohsen Afshar Le, Hon Ostblom, Joel McEwen, Samuel Chau, Erik Prowse, Andrew Fernandes, Ian Norman, Andreea Gilbert, Penney M. Keller, Gordon Tagari, Philip Xu, Han Radisic, Milica Zandstra, Peter W. Sci Rep Article To accelerate the cardiac drug discovery pipeline, we set out to develop a platform that would be capable of quantifying tissue-level functions such as contractile force and be amenable to standard multiwell-plate manipulations. We report a 96-well-based array of 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues - termed Cardiac MicroRings (CaMiRi) - in custom 3D-print-molded multiwell plates capable of contractile force measurement. Within each well, two elastomeric microcantilevers are situated above a circumferential ramp. The wells are seeded with cell-laden collagen, which, in response to the gradual slope of the circumferential ramp, self-organizes around tip-gated microcantilevers to form contracting CaMiRi. The contractile force exerted by the CaMiRi is measured and calculated using the deflection of the cantilevers. Platform responses were robust and comparable across wells, and we used it to determine an optimal tissue formulation. We validated the contractile force response of CaMiRi using selected cardiotropic compounds with known effects. Additionally, we developed automated protocols for CaMiRi seeding, image acquisition, and analysis to enable the measurement of contractile force with increased throughput. The unique tissue fabrication properties of the platform, and the consequent effects on tissue function, were demonstrated upon adding hPSC-derived epicardial cells to the system. This platform represents an open-source contractile force screening system useful for drug screening and tissue engineering applications. Nature Publishing Group UK 2020-04-24 /pmc/articles/PMC7181791/ /pubmed/32332814 http://dx.doi.org/10.1038/s41598-020-62955-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Thavandiran, Nimalan Hale, Christopher Blit, Patrick Sandberg, Mark L. McElvain, Michele E. Gagliardi, Mark Sun, Bo Witty, Alec Graham, George Do, Van T.H. Bakooshli, Mohsen Afshar Le, Hon Ostblom, Joel McEwen, Samuel Chau, Erik Prowse, Andrew Fernandes, Ian Norman, Andreea Gilbert, Penney M. Keller, Gordon Tagari, Philip Xu, Han Radisic, Milica Zandstra, Peter W. Functional arrays of human pluripotent stem cell-derived cardiac microtissues |
title | Functional arrays of human pluripotent stem cell-derived cardiac microtissues |
title_full | Functional arrays of human pluripotent stem cell-derived cardiac microtissues |
title_fullStr | Functional arrays of human pluripotent stem cell-derived cardiac microtissues |
title_full_unstemmed | Functional arrays of human pluripotent stem cell-derived cardiac microtissues |
title_short | Functional arrays of human pluripotent stem cell-derived cardiac microtissues |
title_sort | functional arrays of human pluripotent stem cell-derived cardiac microtissues |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181791/ https://www.ncbi.nlm.nih.gov/pubmed/32332814 http://dx.doi.org/10.1038/s41598-020-62955-3 |
work_keys_str_mv | AT thavandirannimalan functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT halechristopher functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT blitpatrick functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT sandbergmarkl functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT mcelvainmichelee functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT gagliardimark functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT sunbo functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT wittyalec functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT grahamgeorge functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT dovanth functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT bakooshlimohsenafshar functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT lehon functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT ostblomjoel functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT mcewensamuel functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT chauerik functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT prowseandrew functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT fernandesian functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT normanandreea functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT gilbertpenneym functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT kellergordon functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT tagariphilip functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT xuhan functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT radisicmilica functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues AT zandstrapeterw functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues |