Cargando…

Functional arrays of human pluripotent stem cell-derived cardiac microtissues

To accelerate the cardiac drug discovery pipeline, we set out to develop a platform that would be capable of quantifying tissue-level functions such as contractile force and be amenable to standard multiwell-plate manipulations. We report a 96-well-based array of 3D human pluripotent stem cell (hPSC...

Descripción completa

Detalles Bibliográficos
Autores principales: Thavandiran, Nimalan, Hale, Christopher, Blit, Patrick, Sandberg, Mark L., McElvain, Michele E., Gagliardi, Mark, Sun, Bo, Witty, Alec, Graham, George, Do, Van T.H., Bakooshli, Mohsen Afshar, Le, Hon, Ostblom, Joel, McEwen, Samuel, Chau, Erik, Prowse, Andrew, Fernandes, Ian, Norman, Andreea, Gilbert, Penney M., Keller, Gordon, Tagari, Philip, Xu, Han, Radisic, Milica, Zandstra, Peter W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181791/
https://www.ncbi.nlm.nih.gov/pubmed/32332814
http://dx.doi.org/10.1038/s41598-020-62955-3
_version_ 1783526119305117696
author Thavandiran, Nimalan
Hale, Christopher
Blit, Patrick
Sandberg, Mark L.
McElvain, Michele E.
Gagliardi, Mark
Sun, Bo
Witty, Alec
Graham, George
Do, Van T.H.
Bakooshli, Mohsen Afshar
Le, Hon
Ostblom, Joel
McEwen, Samuel
Chau, Erik
Prowse, Andrew
Fernandes, Ian
Norman, Andreea
Gilbert, Penney M.
Keller, Gordon
Tagari, Philip
Xu, Han
Radisic, Milica
Zandstra, Peter W.
author_facet Thavandiran, Nimalan
Hale, Christopher
Blit, Patrick
Sandberg, Mark L.
McElvain, Michele E.
Gagliardi, Mark
Sun, Bo
Witty, Alec
Graham, George
Do, Van T.H.
Bakooshli, Mohsen Afshar
Le, Hon
Ostblom, Joel
McEwen, Samuel
Chau, Erik
Prowse, Andrew
Fernandes, Ian
Norman, Andreea
Gilbert, Penney M.
Keller, Gordon
Tagari, Philip
Xu, Han
Radisic, Milica
Zandstra, Peter W.
author_sort Thavandiran, Nimalan
collection PubMed
description To accelerate the cardiac drug discovery pipeline, we set out to develop a platform that would be capable of quantifying tissue-level functions such as contractile force and be amenable to standard multiwell-plate manipulations. We report a 96-well-based array of 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues - termed Cardiac MicroRings (CaMiRi) - in custom 3D-print-molded multiwell plates capable of contractile force measurement. Within each well, two elastomeric microcantilevers are situated above a circumferential ramp. The wells are seeded with cell-laden collagen, which, in response to the gradual slope of the circumferential ramp, self-organizes around tip-gated microcantilevers to form contracting CaMiRi. The contractile force exerted by the CaMiRi is measured and calculated using the deflection of the cantilevers. Platform responses were robust and comparable across wells, and we used it to determine an optimal tissue formulation. We validated the contractile force response of CaMiRi using selected cardiotropic compounds with known effects. Additionally, we developed automated protocols for CaMiRi seeding, image acquisition, and analysis to enable the measurement of contractile force with increased throughput. The unique tissue fabrication properties of the platform, and the consequent effects on tissue function, were demonstrated upon adding hPSC-derived epicardial cells to the system. This platform represents an open-source contractile force screening system useful for drug screening and tissue engineering applications.
format Online
Article
Text
id pubmed-7181791
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-71817912020-04-29 Functional arrays of human pluripotent stem cell-derived cardiac microtissues Thavandiran, Nimalan Hale, Christopher Blit, Patrick Sandberg, Mark L. McElvain, Michele E. Gagliardi, Mark Sun, Bo Witty, Alec Graham, George Do, Van T.H. Bakooshli, Mohsen Afshar Le, Hon Ostblom, Joel McEwen, Samuel Chau, Erik Prowse, Andrew Fernandes, Ian Norman, Andreea Gilbert, Penney M. Keller, Gordon Tagari, Philip Xu, Han Radisic, Milica Zandstra, Peter W. Sci Rep Article To accelerate the cardiac drug discovery pipeline, we set out to develop a platform that would be capable of quantifying tissue-level functions such as contractile force and be amenable to standard multiwell-plate manipulations. We report a 96-well-based array of 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues - termed Cardiac MicroRings (CaMiRi) - in custom 3D-print-molded multiwell plates capable of contractile force measurement. Within each well, two elastomeric microcantilevers are situated above a circumferential ramp. The wells are seeded with cell-laden collagen, which, in response to the gradual slope of the circumferential ramp, self-organizes around tip-gated microcantilevers to form contracting CaMiRi. The contractile force exerted by the CaMiRi is measured and calculated using the deflection of the cantilevers. Platform responses were robust and comparable across wells, and we used it to determine an optimal tissue formulation. We validated the contractile force response of CaMiRi using selected cardiotropic compounds with known effects. Additionally, we developed automated protocols for CaMiRi seeding, image acquisition, and analysis to enable the measurement of contractile force with increased throughput. The unique tissue fabrication properties of the platform, and the consequent effects on tissue function, were demonstrated upon adding hPSC-derived epicardial cells to the system. This platform represents an open-source contractile force screening system useful for drug screening and tissue engineering applications. Nature Publishing Group UK 2020-04-24 /pmc/articles/PMC7181791/ /pubmed/32332814 http://dx.doi.org/10.1038/s41598-020-62955-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Thavandiran, Nimalan
Hale, Christopher
Blit, Patrick
Sandberg, Mark L.
McElvain, Michele E.
Gagliardi, Mark
Sun, Bo
Witty, Alec
Graham, George
Do, Van T.H.
Bakooshli, Mohsen Afshar
Le, Hon
Ostblom, Joel
McEwen, Samuel
Chau, Erik
Prowse, Andrew
Fernandes, Ian
Norman, Andreea
Gilbert, Penney M.
Keller, Gordon
Tagari, Philip
Xu, Han
Radisic, Milica
Zandstra, Peter W.
Functional arrays of human pluripotent stem cell-derived cardiac microtissues
title Functional arrays of human pluripotent stem cell-derived cardiac microtissues
title_full Functional arrays of human pluripotent stem cell-derived cardiac microtissues
title_fullStr Functional arrays of human pluripotent stem cell-derived cardiac microtissues
title_full_unstemmed Functional arrays of human pluripotent stem cell-derived cardiac microtissues
title_short Functional arrays of human pluripotent stem cell-derived cardiac microtissues
title_sort functional arrays of human pluripotent stem cell-derived cardiac microtissues
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181791/
https://www.ncbi.nlm.nih.gov/pubmed/32332814
http://dx.doi.org/10.1038/s41598-020-62955-3
work_keys_str_mv AT thavandirannimalan functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT halechristopher functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT blitpatrick functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT sandbergmarkl functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT mcelvainmichelee functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT gagliardimark functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT sunbo functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT wittyalec functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT grahamgeorge functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT dovanth functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT bakooshlimohsenafshar functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT lehon functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT ostblomjoel functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT mcewensamuel functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT chauerik functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT prowseandrew functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT fernandesian functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT normanandreea functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT gilbertpenneym functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT kellergordon functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT tagariphilip functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT xuhan functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT radisicmilica functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues
AT zandstrapeterw functionalarraysofhumanpluripotentstemcellderivedcardiacmicrotissues