Cargando…
The NALCN channel complex is voltage sensitive and directly modulated by extracellular calcium
The sodium leak channel (NALCN) is essential for survival in mammals: NALCN mutations are life-threatening in humans and knockout is lethal in mice. However, the basic functional and pharmacological properties of NALCN have remained elusive. Here, we found that robust function of NALCN in heterologo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182417/ https://www.ncbi.nlm.nih.gov/pubmed/32494638 http://dx.doi.org/10.1126/sciadv.aaz3154 |
Sumario: | The sodium leak channel (NALCN) is essential for survival in mammals: NALCN mutations are life-threatening in humans and knockout is lethal in mice. However, the basic functional and pharmacological properties of NALCN have remained elusive. Here, we found that robust function of NALCN in heterologous systems requires co-expression of UNC79, UNC80, and FAM155A. The resulting NALCN channel complex is constitutively active and conducts monovalent cations but is blocked by physiological concentrations of extracellular divalent cations. Our data support the notion that NALCN is directly responsible for the increased excitability observed in a variety of neurons in reduced extracellular Ca(2+). Despite the smaller number of voltage-sensing residues in NALCN, the constitutive activity is modulated by voltage, suggesting that voltage-sensing domains can give rise to a broader range of gating phenotypes than previously anticipated. Our work points toward formerly unknown contributions of NALCN to neuronal excitability and opens avenues for pharmacological targeting. |
---|