Cargando…
Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia–Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling
Acute kidney injury (AKI) is one of the most common and troublesome perioperative complications. Dexmedetomidine (DEX) is a potent α2-adrenoceptor (α2-AR) agonist with anti-inflammatory and renoprotective effects. In this study, a rat renal ischemia–reperfusion injury (IRI) model was induced. At 24 ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183529/ https://www.ncbi.nlm.nih.gov/pubmed/32377532 http://dx.doi.org/10.1155/2020/3230490 |
_version_ | 1783526433164886016 |
---|---|
author | Bao, Naren Tang, Bing Wang, Junke |
author_facet | Bao, Naren Tang, Bing Wang, Junke |
author_sort | Bao, Naren |
collection | PubMed |
description | Acute kidney injury (AKI) is one of the most common and troublesome perioperative complications. Dexmedetomidine (DEX) is a potent α2-adrenoceptor (α2-AR) agonist with anti-inflammatory and renoprotective effects. In this study, a rat renal ischemia–reperfusion injury (IRI) model was induced. At 24 h after reperfusion, the IRI-induced damage and the renoprotection of DEX preconditioning were confirmed both biochemically and histologically. Changes in nuclear factor-kappa B (NF-κB), as well as its downstream anti-inflammatory factor A20 and proinflammatory factor tumor necrosis factor-α (TNF-α), were detected. Atipamezole, a nonselective antagonist, was then added 5 min before the administration of DEX to further analyze DEX's effects on NF-κB, and another anti-inflammatory medicine, methylprednisolone, was used in comparison with DEX, to further analyze DEX's effects on NF-κB. Different concentrations of DEX (0 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM) were applied to preincubated human renal tubular epithelial cell line (HK-2) cells in vitro. After anoxia and reoxygenation, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the levels of NF-κB downstream anti-inflammatory cytokines. The results showed that, unlike methylprednisolone, DEX preconditioning led to a time-dependent biphasic change (first activation then inhibition) of NF-κB in the rat renal IRI models that were given 25 μg/kg i.p. It was accompanied by a similarly biphasic change of TNF-α and an early and persistent upregulation of A20. In vitro, DEX's cellular protection showed a concentration-dependent biphasic change which was protective within the range of 0 to 100 nM but became opposite when concentrations are greater than 1 μM. The changes in the A20 and NF-κB messenger RNA (mRNA) levels were consistent with the renoprotective ability of DEX. In other words, DEX preconditioning protected the rats from renal IRI via regulation biphasic change of NF-κB signaling. |
format | Online Article Text |
id | pubmed-7183529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-71835292020-05-06 Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia–Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling Bao, Naren Tang, Bing Wang, Junke J Immunol Res Research Article Acute kidney injury (AKI) is one of the most common and troublesome perioperative complications. Dexmedetomidine (DEX) is a potent α2-adrenoceptor (α2-AR) agonist with anti-inflammatory and renoprotective effects. In this study, a rat renal ischemia–reperfusion injury (IRI) model was induced. At 24 h after reperfusion, the IRI-induced damage and the renoprotection of DEX preconditioning were confirmed both biochemically and histologically. Changes in nuclear factor-kappa B (NF-κB), as well as its downstream anti-inflammatory factor A20 and proinflammatory factor tumor necrosis factor-α (TNF-α), were detected. Atipamezole, a nonselective antagonist, was then added 5 min before the administration of DEX to further analyze DEX's effects on NF-κB, and another anti-inflammatory medicine, methylprednisolone, was used in comparison with DEX, to further analyze DEX's effects on NF-κB. Different concentrations of DEX (0 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM) were applied to preincubated human renal tubular epithelial cell line (HK-2) cells in vitro. After anoxia and reoxygenation, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the levels of NF-κB downstream anti-inflammatory cytokines. The results showed that, unlike methylprednisolone, DEX preconditioning led to a time-dependent biphasic change (first activation then inhibition) of NF-κB in the rat renal IRI models that were given 25 μg/kg i.p. It was accompanied by a similarly biphasic change of TNF-α and an early and persistent upregulation of A20. In vitro, DEX's cellular protection showed a concentration-dependent biphasic change which was protective within the range of 0 to 100 nM but became opposite when concentrations are greater than 1 μM. The changes in the A20 and NF-κB messenger RNA (mRNA) levels were consistent with the renoprotective ability of DEX. In other words, DEX preconditioning protected the rats from renal IRI via regulation biphasic change of NF-κB signaling. Hindawi 2020-04-17 /pmc/articles/PMC7183529/ /pubmed/32377532 http://dx.doi.org/10.1155/2020/3230490 Text en Copyright © 2020 Naren Bao et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bao, Naren Tang, Bing Wang, Junke Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia–Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling |
title | Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia–Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling |
title_full | Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia–Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling |
title_fullStr | Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia–Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling |
title_full_unstemmed | Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia–Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling |
title_short | Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia–Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling |
title_sort | dexmedetomidine preconditioning protects rats from renal ischemia–reperfusion injury accompanied with biphasic changes of nuclear factor-kappa b signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183529/ https://www.ncbi.nlm.nih.gov/pubmed/32377532 http://dx.doi.org/10.1155/2020/3230490 |
work_keys_str_mv | AT baonaren dexmedetomidinepreconditioningprotectsratsfromrenalischemiareperfusioninjuryaccompaniedwithbiphasicchangesofnuclearfactorkappabsignaling AT tangbing dexmedetomidinepreconditioningprotectsratsfromrenalischemiareperfusioninjuryaccompaniedwithbiphasicchangesofnuclearfactorkappabsignaling AT wangjunke dexmedetomidinepreconditioningprotectsratsfromrenalischemiareperfusioninjuryaccompaniedwithbiphasicchangesofnuclearfactorkappabsignaling |