Cargando…

Klotho antagonizes pulmonary fibrosis through suppressing pulmonary fibroblasts activation, migration, and extracellular matrix production: a therapeutic implication for idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF) has been widely accepted as an aging-related fatal lung disease with a therapeutic impasse, largely a consequence of the complex and polygenic gene architecture underlying the molecular pathology of IPF. Here, by conducting an integrative network analysis on the l...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Qiqing, Chen, Yan, Shen, Shaoran, Wang, Yuanyuan, Liu, Liya, Wu, Shuangshuang, Xu, Wei, Zhao, Weihong, Lin, Mingyan, Wu, Jianqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185122/
https://www.ncbi.nlm.nih.gov/pubmed/32244228
http://dx.doi.org/10.18632/aging.102978
Descripción
Sumario:Idiopathic pulmonary fibrosis (IPF) has been widely accepted as an aging-related fatal lung disease with a therapeutic impasse, largely a consequence of the complex and polygenic gene architecture underlying the molecular pathology of IPF. Here, by conducting an integrative network analysis on the largest IPF case-control RNA-seq dataset to date, we attributed the systems-level alteration in IPF to disruptions in a handful of biological processes including cell migration, transforming growth factor-β (TGF-β) signaling and extracellular matrix (ECM), and identified klotho (KL), a typical anti-aging molecule, as a potential master regulator of those disease-relevant processes. Following experiments showed reduced Kl in isolated pulmonary fibroblasts from bleomycin-exposed mice, and demonstrated that recombinant KL effectively mitigated pulmonary fibrosis in an ex vivo model and alleviated TGF-β-induced pulmonary fibroblasts activation, migration, and ECM production in vitro, which was partially ascribed to FOXF1 and CAV1, two highly co-expressed genes of KL in the IPF. Overall, KL appears to be a vital regulator during pulmonary fibrosis. Given that administration of exogenous KL is a feasible treatment strategy, our work highlighted a promising target gene that could be easily manipulated, leaving the field well placed to further explore the therapeutic potential of KL for IPF.