Cargando…
Deep learned tissue “fingerprints” classify breast cancers by ER/PR/Her2 status from H&E images
Because histologic types are subjective and difficult to reproduce between pathologists, tissue morphology often takes a back seat to molecular testing for the selection of breast cancer treatments. This work explores whether a deep-learning algorithm can learn objective histologic H&E features...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190637/ https://www.ncbi.nlm.nih.gov/pubmed/32350370 http://dx.doi.org/10.1038/s41598-020-64156-4 |